Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 1/2-1/3-1/6).(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0.(1/2+2/3+3/4+...+2017/2018) + 3/4.x = 9/10
0+3/4.x = 9/10
3/4.x = 9/10
x = 9/10: 3/4
x = 6/5
b) x + ( 3/1.3+3/3.5+...+3/13.15) = 11/5
x + 3/2. ( 1-1/3 + 1/3 - 1/5 + ...+ 1/13 - 1/15) = 11/5
x + 3/2. ( 1-1/15) = 11/5
x + 3/2.14/15 = 11/5
x + 7/5 = 11/5
x = 11/5 - 7/5
x = 4/5
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
Tổng trên có 50 số hạng (25 số chẵn, 25 số lẻ) nên Tổng là một số lẻ.
Nếu mỗi lần thay 2 số bất kì bằng hiệu của chúng thì tổng lại giảm đi một số chẵn.
(Chẳng hạn thay: 1+2 thành 1-2 thì tổng giảm đi: (1 + 2) - (1-2) = 4 (4 là 1 số chẵn))
Tổng trên là 1 số lẻ cứ giảm đi 1 số chẵn (liên tục) thì kết quả luôn là 1 số lẻ.
Vậy không thể liên tục thay hai số bất kì bằng hiệu của chúng cho tới khi được kết quả là 0 được.
tk nha bạn
thank you bạn
(^_^)
Còn cái nịt
Hay