Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p: \(F=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+\dfrac{3}{9\cdot12}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
n: \(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
m: \(=\left(3-\dfrac{7}{3}+\dfrac{1}{4}\right):\left(4-\dfrac{31}{6}+\dfrac{9}{4}\right)\)
\(=\dfrac{36-28+3}{12}:\dfrac{48-62+27}{12}\)
\(=\dfrac{11}{13}\)
Ta có : \(\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4.\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(=\dfrac{3\times\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\times\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}\)
\(=\dfrac{3}{4}\)
a: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{13}{15-2}\cdot\dfrac{-15}{40}=\dfrac{-3}{8}\)
b: \(=\dfrac{18\left(34-124\right)}{36\left(-17-13\right)}=\dfrac{1}{2}\cdot\dfrac{-90}{-30}=\dfrac{3}{2}\)
c: \(=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}+\dfrac{\dfrac{-1}{4}\cdot\dfrac{-2}{3}-\dfrac{3}{4}:\dfrac{1}{6}}{\dfrac{3}{2}\cdot\left(\dfrac{-2}{3}-\dfrac{3}{4}\cdot\dfrac{-2}{3}\right)}\)
\(=\dfrac{3}{4}+\dfrac{\dfrac{2}{12}-\dfrac{9}{2}}{\dfrac{3}{2}\cdot\dfrac{-1}{6}}=\dfrac{3}{4}+\dfrac{-13}{3}:\dfrac{-3}{12}=\dfrac{3}{4}+\dfrac{13}{3}\cdot\dfrac{12}{3}\)
\(=\dfrac{3}{4}+\dfrac{156}{9}=\dfrac{217}{12}\)
Ta có :
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+..................+\dfrac{4}{2008.2010}\)
\(\Rightarrow F=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+.............+\dfrac{2}{2008.2010}\right)\)
\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..............+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(\Rightarrow F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(\Rightarrow F=2.\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+......+\dfrac{4}{2008.2010}\)
\(F=\dfrac{4}{2}\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+.....+\dfrac{1}{2008.2010}\right)\)
\(F=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+.....+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)\(F=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)\(F=2.\dfrac{502}{1005}\)
\(F=\dfrac{1004}{1005}\)
1: \(=\dfrac{15}{37}\cdot\dfrac{38}{41}-\dfrac{15}{37}\cdot\dfrac{74}{45}-\dfrac{38}{41}\cdot\dfrac{15}{37}-\dfrac{38}{41}\cdot\dfrac{82}{76}\)
\(=\dfrac{-2}{3}-1=-\dfrac{5}{3}\)
2: \(=\dfrac{47}{53}\cdot\dfrac{17}{3}-\dfrac{47}{53}\cdot\dfrac{53}{47}+\dfrac{17}{3}\cdot\dfrac{6}{17}-\dfrac{17}{3}\cdot\dfrac{47}{53}\)
\(=-1+2=1\)
Ta có: \(F=\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\cdot\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
\(F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(F=2.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2008.2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(F=2.\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)\)
\(F=1-\dfrac{1}{1005}=\dfrac{1004}{1005}\)
Ta có:B=1\(\dfrac{6}{41}\)( \(\dfrac{12+\dfrac{12}{19}-\dfrac{12}{37}-\dfrac{12}{53}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2006}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2006}}\) )
B=\(\dfrac{47}{41}\) [\(\dfrac{12\left(1+\dfrac{1}{19}-\dfrac{1}{37}-\dfrac{1}{53}\right)}{3\left(1+\dfrac{1}{3}-\dfrac{1}{37}-\dfrac{1}{53}\right)}:\dfrac{4\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2006}\right)}\) B = \(\dfrac{47}{41}\) [ \(\dfrac{12}{3}:\dfrac{4}{5}\)]
B = \(\dfrac{47}{41}\)[ 4 . \(\dfrac{5}{4}\)]
B = \(\dfrac{47}{41}.5\)
B = \(\dfrac{235}{41}\)
Chúc bn hc tốt!!!
mk có thắc mắc là bạn để 3 ra ngoài sao 1/3 vẫn giữ nguyên vậy phải bằng 1/9 mới đúng chứ'
a)\(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2008\cdot2010}\)
\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2008\cdot2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2008}-\dfrac{1}{2010}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2010}\right)=2\cdot\dfrac{502}{1005}=\dfrac{1004}{1005}\)
b)\(\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}=\dfrac{3\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}{4\left(\dfrac{1}{41}-\dfrac{4}{47}+\dfrac{9}{53}\right)}=\dfrac{3}{4}\)
a) gọi biểu thức đó là A
Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)
\(A=\dfrac{4}{2}.\left(\dfrac{1}{2}-\dfrac{1}{2009}\right)\)
\(A=2.\left(\dfrac{2007}{4018}\right)=\dfrac{2007}{2009}\)
b) dễ quá bạn tự làm. (không phải mink không biết làm đâu nha)