Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
\(\Leftrightarrow B=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(\Leftrightarrow2B=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{13}\right)=1-\frac{3}{13}=\frac{10}{13}\)
\(\Leftrightarrow A=1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}=1+\frac{10}{13}=\frac{23}{13}\)
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{1}{3}+\dfrac{1}{25}\)
\(=\dfrac{28}{75}\)
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+\dfrac{61}{63}+\dfrac{97}{99}\)
\(=\left(1-\dfrac{2}{3}\right)+\left(1-\dfrac{2}{15}\right)+\left(1-\dfrac{2}{35}\right)+\left(1-\dfrac{2}{63}\right)+\left(1-\dfrac{2}{99}\right)\)
\(=\left(1+1+1+1+\right)-\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\)
\(=5-\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\)
\(=5-\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=5-\left(1-\dfrac{1}{11}\right)\)
\(=5-\dfrac{10}{11}\)
\(=\dfrac{45}{11}\)
A= 2( 1/15 + 1/35 + 1/63+ 1/99+1/143)
A= 2(1/3x5 +1/5x7 + 1/7x9 + 1/9x11 + 1/11x13)
A=2(1/3-1/5+1/5-1/+1/7-1/9+1/9-1/11+1/11-1/13)
A=2(1/3-1/13)
A=2x10/39
A=20/39
A = 2/15 + 2/35 + 2/63 + 2/99 + 2/143
A = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + 2/11x13
A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13
A = 1/3 - 1/13
A = 12/13
a)Ta có:
A= 1/15+1/35+1/63+1/99+1/143
A= 1/3.5+1/5.7+1/7.9+1/9.11+1/11.13
2A= 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
2A= 1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13
Đơn giản đi ta được:
2A= 1/3-1/13
2A= 10/39
A= 5/39
Vậy A= 5/39
b) Để A và B có giá trị bằng nhau thì:
\(\frac{3}{4}\cdot x+7=\frac{4}{3}\cdot x-35\)
\(7+35=\frac{4}{3}\cdot x-\frac{3}{4}\cdot x\)
\(42=\frac{7}{12}\cdot x\)
\(x=42:\frac{7}{12}\)
\(x=72\)
\(\frac{2}{3}\cdot y-\frac{12}{3}:\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)=\frac{1}{3}\)\(\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+\frac{13-11}{11\cdot13}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+\frac{1}{9}-\frac{1}{9}+\frac{1}{11}-\frac{1}{11}+\frac{1}{13}\right)\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\left(\frac{1}{1}+\frac{1}{3}\right)=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4:\frac{4}{3}\)\(=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-4\cdot\frac{3}{4}=\frac{1}{3}\)
\(\frac{2}{3}\cdot y-3=\frac{1}{3}\)
\(\frac{2}{3}\cdot y=\frac{1}{3}+3\)
\(\frac{2}{3}\cdot y=\frac{10}{3}\)
\(y=\frac{10}{3}:\frac{2}{3}\)
y=5
Giải:
Đặt A = 1/3+1/15+1/35+1/63+1/99+1/143+1/195
2A= 2/(1.3) + 2/(3.5) + 2/(5.7) + 2/(7.9)+2/(9.11) + 2/(11.13)+2/(13.15)
2A=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9...
2A=1/1-1/15=14/15
Vậy A=14/15 : 2 = 7/15
Nhấn đúng mk nha Tran Dan
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+..+\frac{1}{143}+\frac{1}{195}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{13.15}\)
= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{13}-\frac{1}{15}\)
= \(1-\frac{1}{15}=\frac{14}{15}\)
tick đúng nha