Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9-1\right)\left(9+1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\frac{1}{8}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
cứ như thế
\(=\frac{1}{8}\left(9^{64}-1\right)< 9^{64}-1\)=>đpcm
964 - 1 = (932 + 1)(932 - 1) = ... = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)(9 - 1) > (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(9 + 1)
964=(932+1).(932-1)
=(932+1)(916+1)(916-1)
=(932+1)(916+1)(98+1)(98-1)
=(932+1)(916+1)(98+1)(94+1)(94-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(92-1)
=(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)
Vì (932+1)(916+1)(98+1)(94+1)(92+1)(9+1)(9-1)>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
=>964-1>(932+1)(916+1)(98+1)(94+1)(92+1)(9+1)
a) \(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)
b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{64}-1\right)\)
\(=\dfrac{9^{64}-1}{10}\)
Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)
Mà \(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)
\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)
c) Ta có:
\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)
Vì x>y>0, ta có:
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)
Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)
a) Ta có:
\(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2
a) \(85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
\(=\left(85^2-15^2\right)+\left(75^2-25^2\right)+\left(65^2-35^2\right)+\left(55^2-45^2\right)\)
\(=\left(85-15\right)\left(85+15\right)+\left(75-25\right)\left(75+25\right)+\left(65-35\right)\left(65+35\right)+\left(55-45\right)\left(55+45\right)\)
\(=70.100+50.100+30.100+10.100\)
\(=7000+5000+3000+1000\)
\(=16000\)
b) \(\frac{135^2+130.135+65^2}{135^2-65^2}\)
\(=\frac{135^2+2.60.135+65^2}{135^2-65^2}\)
\(=\frac{\left(135+65\right)^2}{\left(135-65\right)^2}\)
\(=\frac{200^2}{70^2}\) \(=\frac{200}{70}=\frac{20}{7}\)
Lời giải:
Sử dụng công thức $(a-1)(a+1)=a^2-1$ ta có:
$8F=(9-1)(9+1)(9^2+1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^2-1)(9^2+1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^4-1)(9^4+1)(9^8+1)...(9^{32}+1)$
$=(9^8-1)(9^8+1)...(9^{32}+1)$
$=(9^{16}-1)...(9^{32}+1)=(9^{32}-1)(9^{32}+1)=9^{64}-1$
$\Rightarrow F=\frac{9^{64}-1}{8}$