Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
2:
a: =>-2x=10
=>x=-5
b: =>(x-3)(2x+5)=0
=>x=3 hoặc x=-5/2
Ta có : 1/x - 1/(x+1) = 1/x(x+1)
<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)
<=> pcm 1/x(x+1) = 1/x(x+1)
Đây là điều luôn đúng nên ta có điều phải chứng minh
Chú ý : Chữ pcm là phải chứng minh
Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)
\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
Áp dụng chứng minh trên ta có :
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
=1/x
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu
a) (x+2)(x-3)=0
<=> x+2=0
x-3=0
<=> x=-2
x= 3
b) 2x-x2=0
<=> x(2-x) =0
<=> x=0
2-x=0
<=> x=0
x=2
a)(x+2)(x-3)=0
=>\(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy x=-2 hoặc x=3
b) 2x-x2=0
=> x(2-x)=0
=>\(\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2