K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2022

loading...

28 tháng 12 2022

bn ơi 2022+2021=4043 mà bn

Bài 1: 

b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)

Bài 2: 

a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)

d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)

\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)

e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

2: 

a: =>-2x=10

=>x=-5

b: =>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

4 tháng 6 2018

Ta có : 1/x - 1/(x+1) = 1/x(x+1)

<=> pcm \(\frac{x+1}{x\left(x+1\right)}-\frac{x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

<=> pcm \(\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{x\left(x+1\right)}\)

<=> pcm 1/x(x+1) = 1/x(x+1)

Đây là điều luôn đúng nên ta có điều phải chứng minh

Chú ý : Chữ pcm là phải chứng minh

4 tháng 6 2018

Ta có : \(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x^2+x+2x+2}+\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)+2\left(x+1\right)}+\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}\)

\(+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x+5}\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)

Áp dụng chứng minh trên ta có :

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)

=1/x

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap

13 tháng 8 2017





a, (x-1).(x-2).(x-3)

= (x2 - 2x - x + 2) . (x-3)

= (x- 3x + 2). (x-3)4

= x3 - 3x2 - 3x2 + 9x + 2x -6

= x3 - 6x+ 11x -6

b) (x2 +x+1)(x2-1)(x2-x+1)

= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)

= (x4 + x3 -x -1) . (x2 - x  +1)

= x- x5 + x4 + x- x4 + x3 - x2 + x -1

= x6 + x3 - x+ x - 1

c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)

= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75

= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75

= 6x-6x2 +55

d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)

làm tương tự phần C

lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu



 


 

a) (x+2)(x-3)=0
<=> x+2=0
       x-3=0
<=> x=-2
       x= 3

b) 2x-x2=0
<=> x(2-x) =0
<=> x=0
       2-x=0
<=> x=0
       x=2

4 tháng 8 2016

a)(x+2)(x-3)=0

=>\(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

Vậy x=-2 hoặc x=3

b) 2x-x2=0

=> x(2-x)=0

=>\(\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy x=0 hoặc x=2