K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

\(\dfrac{1}{500}+\dfrac{3}{500}+\dfrac{5}{500}+...+\dfrac{95}{500}+\dfrac{97}{500}+\dfrac{99}{500}\)

\(=\left(\dfrac{1}{500}+\dfrac{99}{500}\right)+\left(\dfrac{3}{500}+\dfrac{97}{500}\right)+\left(\dfrac{5}{500}+\dfrac{95}{500}\right)+...\)

\(=\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{5}+...\) ( 50 số )

\(=\dfrac{1}{5}.50\)

\(=10\)

7 tháng 6 2017

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt Linh

Võ Đông Anh TuấnHoàng Lê Bảo NgọcPhương An

2 tháng 5 2017

1)

\(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\\ 5A=1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\\ 5A-A=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\right)\\ 4A=1-\dfrac{500}{5^{500}}\\ A=\left(1-\dfrac{500}{5^{500}}\right):4\\ A=1:4-\dfrac{500}{5^{500}}:4\\ A=\dfrac{1}{4}-\dfrac{500}{5^{500}\cdot4}< \dfrac{1}{4}< \dfrac{5}{16}\)

Vậy \(A< \dfrac{5}{16}\)

Đặt \(A=\dfrac{24\cdot135+3\cdot561\cdot8+4\cdot126\cdot6}{1+3+5+7+...+97+99-500}\)

\(=\dfrac{24\cdot822}{2000}=\dfrac{1233}{125}\)

1 tháng 4 2017

Đặt vế đầu là A, vế sau là B.

Vế A:

- Tử:

\(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)

\(=100\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{100}\right)\)
\(=100\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{98}+\dfrac{1}{99}+\dfrac{1}{100}\right)\)

Vậy:

\(A=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ =\dfrac{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+..+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\\ \Rightarrow A=50\)

Vế B:

- Tử:

\(92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\\ =\dfrac{40}{45}+\dfrac{40}{50}+...+\dfrac{40}{500}\\ =40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)\)

Vậy:

\(B=\dfrac{92-\dfrac{1}{9}-\dfrac{1}{10}-...-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\\ =\dfrac{40\left(\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{500}}\\ \Rightarrow B=40\)

Từ 2 vế trên ta tính được \(\dfrac{A}{B}=\dfrac{50}{40}=\dfrac{5}{4}\)

1 tháng 4 2017

@Tuấn Anh Phan Nguyễn giúp mk!!

7 tháng 5 2017

lầy dạ??

11 tháng 6 2018

+)Đặt A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\dfrac{99}{1}\)

A= \(\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+...+\left(1+1+1+...+1\right)\) (99 chữ số 1)

A= \(\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

A= \(\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+1\)

A= \(100.\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{2}+\dfrac{1}{100}\right)\)

⇒ M= \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+...+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}\)

M= \(\dfrac{100.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}}\)

M= 100 (1)

+) Đặt B= \(92-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\)

B= \(\left(1+1+1+...+1\right)-\dfrac{1}{9}-\dfrac{2}{10}-...-\dfrac{92}{100}\) ( 92 chữ số 1)

B= \(\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)

B= \(\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)

B= \(8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)

⇒ N= \(\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{500}}\)

N= 8 (2)

Từ (1) và (2)⇒ \(\dfrac{M}{N}\) = \(\dfrac{100}{8}\)= \(\dfrac{25}{2}\)

Vậy \(\dfrac{M}{N}=\dfrac{25}{2}\)

29 tháng 9 2018

Tại sao từ dòng thứ 3 trên xuống bạn lại cộng với 1 mà ko phải là ( 1 + 99/1) vậy

10 tháng 5 2021

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined

2 tháng 5 2017

2)

\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)

Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)\(C\)

\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)

\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)

Vậy \(D< 100\)