Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7/4 * ( 3333/1212 + 3333/2020 + 3333/3030 + 3333/4242) => A = 7/4* (33/12 + 33/20 + 33/30 + 33/42) => A = 7/4* ( 33/3*4 + 33/4*5 + 33/5*6 + 33/6*7) => A = 7/4* { 33/(4-3) * ( 1/4 - 1/5 + 1/5 - 1/6 + 1/6-1/7)} => A = 7/4*33 * ( 1/4 - 1/7) A = 231/4 * 3/28 =693/112.
\(\frac{7}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)=\frac{7}{4}\left(\frac{33\times101}{12\times101}+\frac{33\times101}{20\times101}+\frac{33\times101}{30\times101}+\frac{33\times101}{42\times101}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=\frac{7}{4}\times\frac{44}{7}=11\)
A = 7/4.[3333.(1/1212+1/2020+1/3030+1/4242)]
A= 7/4.[3333.(1/12.101+1/20.101+1/30.101+1/42.101)]
A= 7/4.[3333.(1/12+1/20+1/30+1/42)]
A= 7/4.[3333.(1/3.4+1/4.5+1/5.6+1/6.7)]
A= 7/4.[3333.(1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)]
A= 7/4.[3333.(1/3-1/7)]
A= 7/4.[3333.4/21]
A= 7/4.4444/7
A=1111
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(A=\frac{231}{4}.\frac{4}{21}\)
\(A=11\)
Ta có:
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(=\frac{7}{4}.\left[3333.\left(\frac{1}{1212}+\frac{1}{2020}+\frac{1}{3030}+\frac{1}{4242}\right)\right]\)
\(=\frac{7}{4}.\left[3333.\left(\frac{1}{12.101}+\frac{1}{20.101}+\frac{1}{30.101}+\frac{1}{42.101}\right)\right]\)
\(\frac{7}{4}.\left[3333.\frac{1}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]\)
\(=\frac{7}{4}.33.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\right]\)
\(=33.\left[\frac{7}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\right]\)
\(=33.\left(\frac{7}{4}.\frac{4}{7}\right)\)
\(=33.1\)
\(=33\)
Vậy \(A=33\)
A= 7/4 (33/12 +33/20+33/30+33/42)
A= 7/4 * 33 * (1/12+1/20+1/30+1/42)
A= 7/4 * 33 * (1/3*4 + 1/4*5 +1/5*6 +1/6*7)
A= 231/4 (1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7)
A=231/4(1/3-1/7)
A=231/4(7/21-3/21)
A=231/4 * 4/21
A=11
Vậy A=11
\(A=\frac{7}{4}\cdot\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}\cdot\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7}{4}\cdot33\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
Rồi tách ra rồi làm nốt
\(A=\dfrac{7}{4}\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{33\cdot101}{12\cdot101}+\dfrac{33\cdot101}{20\cdot101}+\dfrac{33\cdot101}{30\cdot101}+\dfrac{33\cdot101}{42\cdot101}\right)\)
\(=\dfrac{7}{4}\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)
\(=\dfrac{7}{4}\cdot33\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=\dfrac{231}{4}\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\right)\)
\(=\dfrac{231}{4}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{231}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}\right)=\dfrac{231}{4}\cdot\dfrac{4}{21}=11\)
\(A=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(A=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)
\(A=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(A=\frac{7.11}{4}.\left(\frac{1}{4}+\frac{3}{20}+\frac{1}{10}+\frac{1}{14}\right)\)
\(A=\frac{77}{4}.\left(\frac{35}{140}+\frac{21}{140}+\frac{14}{140}+\frac{10}{140}\right)\)
\(A=\frac{77}{4}.\frac{80}{140}=\frac{77}{8}.\frac{20}{35}\)
\(A=11\)
Vậy : \(A=11\)