Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1 - 2 + 3 - 4 + ... + 99 - 100
=> A = ( 1 - 2) + ( 3 - 4 ) + ... + ( 99 - 100 )
=> A = ( -1 ) + ( -1 ) + ... + ( -1 )
Vì tổng A có 100 số hạng,2 số hạng tạo thành 1 cặp nên 100 số hạng tạo thành 50 cặp
=> A = ( -1 ) . 50
=> A = -50
b) B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50
=> B = -400
c ) C = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100
=> C = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
=> C = 0 + 0 + ... + 0
=> C = 0
A = 1 - 2 + 3 - 4 + ..... + 99- 100
A = ( 1 -2 ) + ( 3 - 4 ) + ..... + ( 99 - 100 ) ( 50 nhóm )
A = 1 + 1 + .... + 1 ( 50 số 1 )
A = 1 . 50
A = 50
\(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(A=\frac{3^2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3\cdot\left(1-\frac{1}{100}\right)\)
\(A=3\cdot\frac{99}{100}=\frac{297}{100}\)
Vậy \(A=\frac{297}{100}\)
( 101+100+.......+3+2+1 ) / ( 101-100+100_99+........+ 4 - 3 + 2 - 1 )
= [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ] / [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )
= 102+102+.........+102+51 / 1+1+..............+1+1
= { [ 51( cặp) * 102 ] +51 } / [ 51(cặp) * 1 ]
= 5252 + 51 / 51
= 5253 / 51
= 103
1 + 2 + 3 + ... + 99 + 100
= (1 + 100).100:2
= 101.50
= 5050
Từ 1 đến 100 có 100 số. Như vậy, số cặp số là :
100 : 2 = 50 (cặp)
Mỗi cặp số có tổng bằng :
1 + 100 (2 + 99) (3 + 98)... = 11
Kết quả của phép tính là :
101 x 50 = 5050
Đáp số : 5050
Ta có:
\(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
=> \(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
=> \(A+3A=1-\frac{1}{3^{100}}\)
=> \(4A=\frac{3^{100}-1}{3^{100}}\)
=> \(A=\frac{3^{100}-1}{4.3^{100}}\)
A=101-100+99-98+...+3-2+1
A = ( 101 - 100 ) + ( 99 - 98 ) +...+ ( 5 - 4 ) + ( 3 - 2 ) + 1
A = 1 + 1 + 1 + ... + 1 + 1
A = 1 x 51
A = 51
A = ( 101 - 100) + ( 99 - 98 ) + ... + ( 5 - 4) - (3-2)+1
A= 1+ 1 +1 ... + 1 + 1
A = 1 x 51
A = 51
Số các số hạng là:(100-1):1+1=100 (số)
Tổng là:(100+1)x100:2=5050
Số hạng là:(100-1)+1=1000
Tổng là (100+1)x100:2=5050