Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}1,2.\frac{{15}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} - 1,2.5\frac{3}{4} - \frac{{16}}{7}.\frac{{ - 71}}{8}\\ =(1,2.\frac{{15}}{4} - 1,2.5\frac{3}{4}) +( \frac{{16}}{7}.\frac{{ - 85}}{8}- \frac{{16}}{7}.\frac{{ - 71}}{8}) \\= \frac{{12}}{{10}}.\frac{{15}}{4} - \frac{{12}}{{10}}.\frac{{23}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} - \frac{{16}}{7}.\frac{{ - 71}}{8}\\ = \frac{6}{5}.\frac{{15}}{4} - \frac{6}{5}.\frac{{23}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} + \frac{{16}}{7}.\frac{{71}}{8}\\ = \frac{6}{5}.(\frac{{15}}{4} - \frac{{23}}{4}) + \frac{{16}}{7}.(\frac{{ - 85}}{8} + \frac{{71}}{8})\\ = \frac{6}{5}.\frac{{ - 8}}{4} + \frac{{16}}{7}.\frac{{ - 14}}{8}\\ = \frac{6}{5}.( - 2) + ( - 4)\\ = \frac{{ - 12}}{5} + \frac{{ - 20}}{5}\\ = \frac{{ - 32}}{5}\end{array}\)
Chú ý: Nếu phân số chưa tối giản, ta nên tối giản phân số trước để việc tính toán được thuận tiện hơn.
a) \(\frac{6}{5}.{\left( {1,2} \right)^8} = 1,2.{(1,2)^8} = {(1,2)^{1 + 8}} = {(1,2)^9}\)
b) \({\left( {\frac{{ - 4}}{9}} \right)^7}:\frac{{16}}{{81}} = {\left( {\frac{{ - 4}}{9}} \right)^7}:{\left( {\frac{{ - 4}}{9}} \right)^2} = {\left( {\frac{{ - 4}}{9}} \right)^{7 - 2}} = {\left( {\frac{{ - 4}}{9}} \right)^5}\)
a) 15/11 - (5/7 - 18/11) + 27/7
= 15/11 - 5/7 + 18/11 + 27/7
= (15/11 + 18/11) + (-5/7 + 27/7)
= 3 + 22/7
= 43/7
b) 39/5 + (9/4 - 9/5) - (5/4 + 1,2)
= 39/5 + 9/4 - 9/5 - 5/4 - 6/5
= (39/5 - 9/5 - 6/5) + (9/4 - 5/4)
= 24/5 + 1
= 29/5
c) -1,2 - 0,8 + 0,25 + 5,75 - 2022
= (-1,2 - 0,8) + (0,25 + 5,76) - 2022
= -2 + 6 - 2022
= 4 - 2022
= -2018
d) 0,1 + 16/9 + 5,1 + (-20/9)
= (0,1 + 5,1) + (16/9 - 20/9)
= 5,2 - 4/9
= 419/90
a) \(\dfrac{15}{11}-\left(\dfrac{5}{7}-\dfrac{18}{11}\right)+\dfrac{27}{7}=\dfrac{22}{7}+3=\dfrac{43}{77}\)
b) \(\dfrac{39}{5}+\left(\dfrac{9}{4}-\dfrac{9}{5}\right)-\left(\dfrac{5}{4}+\dfrac{6}{5}\right)=\dfrac{24}{5}+1=\dfrac{29}{5}\)
c) \(-1,2-0,8+0,25+5,75-2022=-2+6-2022=-2018\)
d) \(0,1+\dfrac{16}{9}+5,1+\dfrac{-20}{9}=\dfrac{26}{5}-\dfrac{4}{9}=\dfrac{214}{45}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
`1,2×15/4+16/7×-85/8-1,2 × 5 3/4 - 16/7 × -71/8`
`=6/5xx15/4+16/7xx(-85)/8-6/5xx23/4-16/7xx(-71)/8`
`=6/5xx(15/4-23/4)+16/7xx[(-85/8)-(-71/8)]`
`=6/5xx(-8/4)+16/7xx(-14/8)`
`=-32/5`