Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)
$\Rightarrow -11x\geq 0$
$\Rightarrow x\leq 0$
Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$
PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$
$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$
$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$
$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$
$\frac{1}{2}(1-\frac{1}{21})=-x$
$\frac{10}{21}=-x$
$\Rightarrow x=\frac{-10}{21}$
Bài làm:
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(=\left(x^2+5x+5\right)^2\)
b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Làm mẫu cho 1 vd:
a, (x+1)(x+2)(x+3)(x+4)+1
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)
Đặt \(y=x^2+5x+5\)
Khi đó ::
(1) = \(\left(y-1\right)\left(y+1\right)+1\)
\(=y^2-1+1=y^2\)
Thay vào ta được: \(\left(x^2+5x+5\right)^2\)
4, Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)
xét x \(\ge\) \(-\frac{1}{5}\)
Ta Có Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\) = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\) = \(\frac{27}{35}\) (1)
xét x \(< -\frac{1}{5}\)
Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x + \(\frac{13}{35}\)
với x \(< -\frac{1}{5}\)
=> -2x \(>\) \(\frac{2}{5}\)
=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)
Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)
5 , D = |x| + |8-x|
D = |x| + |8-x| \(\ge\) |x+8-x| = |8| = 8
Dấu ''='' xảy ra khi x(8-x) \(\ge\) 0 <=> 0\(\le\)x\(\le\) 8
Vậy MinD = 8 khi \(0\le x\le8\)
6,L= |x - 2012| + |2011 - x|
L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x | = |-1| = 1
Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0
làm nốt câu 6 nãy ấn nhầm
<=> 2011\(\le\) x \(\le\) 2012
Vậy MinL = 1 khi \(2011\le x\le2012\)
7 , E = | x- \(\frac{2006}{2007}\) | + |x-1|
Ta có :
E = |x-\(\frac{2006}{2007}\) | + |1-x|
E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x | = \(\frac{1}{2007}\)
Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=> \(\frac{2006}{2007}\le x\le1\)
Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\)
8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) |
Ta có :
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) - x |
F = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x | = \(\frac{1}{2}\)
Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0 <=> \(\frac{1}{4}\le x\le\frac{3}{4}\)
Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)
a) 3/4 + -1/8 = 5/8
b)-5/12 + -7/24 = -9/8
c) 4/21 - -5/28 = 31/84
d) 1 + -7/28 = 3/4
e) -4/3 - 17/6= -25/6
f) 1/3 - ( 1/2 +1/8 )= -7/24
g)1/21 - ( 1/7 - 1/3 ) = 5/21
h)1/2 - 1/4 + 1/13 + 1/8= 47/104
a) x - 1/10 = 1/15
x=1/15+1/10
x=1/6 Vay x=1/6b) -4/21 - x = -3/7
x=-4/21+3/7 x=5/21 Vay x=5/21c) x + 1/2 = 3/4 - (-1/2)
x+1/2= 5/4
x= 5/4-1/2
x=3/4
Vay x=3/4
d) 4/7 - x = 1/3 - (-2/3)
x= 4/7-1/3-2/3 x= -3/7 Vay x=-3/7
\(K=\left(1-\dfrac{3}{2\cdot4}\right)\left(1-\dfrac{3}{3\cdot5}\right)\cdot...\cdot\left(1-\dfrac{3}{19\cdot21}\right)\)
\(=\dfrac{3^2-1-3}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2-1-3}{\left(4-1\right)\left(4+1\right)}\cdot...\cdot\dfrac{20^2-4}{\left(20-1\right)\left(20+1\right)}\)
\(=\dfrac{\left(3-2\right)\left(3+2\right)}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{\left(4-2\right)\left(4+2\right)}{\left(4-1\right)\left(4+1\right)}\cdot...\cdot\dfrac{18\cdot22}{\left(20-1\right)\left(20+1\right)}\)
\(=\dfrac{1\cdot5}{2\cdot4}\cdot\dfrac{2\cdot6}{3\cdot5}\cdot...\cdot\dfrac{18\cdot22}{19\cdot21}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot21\cdot22}{2\cdot3\cdot4\cdot5\cdot...\cdot19\cdot20\cdot21}=1\cdot22=22\)