K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Ta có : \(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+.......+\left(1-\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=\left(1+1+1+......+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2016.2017}\right)\)

\(\Rightarrow A=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(\Rightarrow A=2016-\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=2016-\frac{2016}{2017}=2015\frac{1}{2017}\)

21 tháng 6 2018

\(B=\left(\frac{2}{2.3}-1\right)\left(\frac{2}{3.4}-1\right)...\left(\frac{2}{2008.2009}-1\right)\)

\(B=\left(\frac{2}{2.3}-\frac{6}{2.3}\right)\left(\frac{2}{3.4}-\frac{12}{3.4}\right)...\left(\frac{2}{2008.2009}-\frac{2008.2009}{2008.2009}\right)\)

\(B=\left(-\frac{4}{2.3}\right)\left(-\frac{10}{3.4}\right)...\left(\frac{2-2008.2009}{2008.2009}\right)\)

\(B=\left(-\frac{1.4}{2.3}\right)\left(-\frac{2.5}{3.4}\right)...\left(-\frac{2007.2010}{2008.2009}\right)\)

Biểu thức B có (2008 - 2) : 1 + 1 = 2007 (thừa số)

Vì cả 2007 thừa số của biểu thức B đều mang dấu (-)

Nên biểu thức B mang dấu (-)

\(B=-\frac{1.2....2007}{2.3...2008}.\frac{4.5...2010}{3.4...2009}\)

\(B=-\frac{1}{2008}.\frac{2010}{3}\)

\(B=-\frac{1.2010}{2008.3}=-\frac{1.1005}{1004.3}=-\frac{1.335}{1004.1}\)

\(B=-\frac{335}{1004}\)

Vậy\(B=-\frac{335}{1004}\)

15 tháng 7 2018

\(\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{1995\cdot1996}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{1995\cdot1996}\right)\)

\(=\left(1995\cdot1\right)-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1995}-\frac{1}{1996}\right)\)

\(=1995-\left(1-\frac{1}{1996}\right)\)

\(=1995-\frac{1995}{1996}\)

5 tháng 10 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

Từ điều kiện trên ta có :

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)

\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(50x=1-\frac{1}{100}\)

\(50x=\frac{99}{100}\)

\(x=\frac{99}{5000}\)

5 tháng 10 2018

Do \(\left|a\right|\ge0\forall a\) nên:

\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)

\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)

Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)

\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)

\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)

đề chưa đầy đủ

19 tháng 3 2018

à đề thiếu tổng các giá trị tuyệt đối ở trên =100x

15 tháng 8 2016

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{a.\left(a+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{a}-\frac{1}{a+1}\)

\(=1-\frac{1}{a+1}\)

b, \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{a.\left(a+1\right).\left(a+2\right)}\)

=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(a+1\right).\left(a+2\right)}\)

Chúc bạn học giỏi nha!!!

K cho mik vs nhé Hang Nguyen

15 tháng 8 2016

Ý bạn là j z, tìm quy tắc để tính hả???!!!

Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900

19 tháng 8 2017

Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi

1 tháng 9 2019

\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)+\left(-5+\frac{5}{2}-\frac{4}{3}\right)\)

\(=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)

\(=\left(3-2-5\right)+\left(\frac{1}{2}-\frac{5}{2}+\frac{5}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}+\frac{4}{3}\right)\)

\(=-4-\frac{1}{2}\)

\(=-\frac{9}{2}\)

\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

1 tháng 9 2019

\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)+\left(-5+\frac{5}{2}-\frac{4}{3}\right)\)

\(A=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)

\(A=\left(3-2-5\right)+\left(\frac{1}{2}-\frac{5}{2}+\frac{5}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}+\frac{4}{3}\right)\)

\(A=-4+\frac{1}{2}-\frac{4}{3}\)

\(A=-\frac{29}{6}\)