Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết 1000 chữ số đầu tiên, chữ số 3 xuất hiện bao nhiêu lần?
Cách giải nhanh và lẹ mình sẽ tick đúng!
Xét từ 1-100
số chữ số 3 ở hàng đơn vị: (3,13,23,33,43,53,63,73,83,93) 10 chữ số
số chữ số 3 ở hàng chục: (30,31,32,33,34,35,36,37,38,39): 10 chữ số
Như vậy cứ 100 số thì chữ số 3 sẽ xuất hiện 20 lần (chỉ tính ở hàng chục và hàng đơn vị)
Xét từ 1-1000
Sồ chữ số 3 ở hàng chục và hàng đơn vị: 20*10=200(chữ số)
Số chữ số 3 ở hàng trằm (300,301,302,303,...399): 100 chữ số
Vậy số lần chữ số 3 xuất hiện: 100+200=300 (lần)
\(7.\left[\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right):2\right]\)
\(7.\left[\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right):2\right]\)
\(7.\left(\frac{1}{3}-\frac{1}{13}\right):2\)
\(7.\frac{10}{39}:2=\frac{35}{39}\)
\(\frac{7}{15}+\frac{7}{35}+\frac{7}{63}+\frac{7}{99}+\frac{7}{143}\)
\(=\frac{7}{2}\cdot\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=\frac{7}{2}\cdot\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{7}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{7}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{7}{2}\cdot\frac{10}{39}\)
\(=\frac{35}{39}\)
khỏi ghi lại đề nha
A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50
A=1-1/50
A=49/50
vì A = 1.2.3.4.5.....98.99.100 là hợp số vì có nhiều hơn 2 ước
mà 111 cũng là hợp số nên A+111 là hợp số
tick mình nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
khi nào câu hỏi mình lên bạn nhớ trả lời hộ mình nhé
a ) A = { tháng 1 , tháng 2 , tháng 3 }
b ) { tháng 4 , tháng 5 , tháng 6 }
c ) { tháng 7 , tháng 8 , tháng 9 }
d ) { tháng 10 , tháng 11 , tháng 12 }
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}\)
\(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2017}}+\frac{1}{2^{2018}}\)
\(\Rightarrow B=2B-B=2-\frac{1}{2^{2018}}\)
P = (-1) + (-2) + ... + (-50)
P = -(1 + 2 + 3 + ... + 50 )
P = - [( 1 + 50) . 50 : 2 ]
P = -1275
ta lấy các số + vs nhau ra -50 để có các số -50 cùng nhau rồi cộng lại ra -920