K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

MẤY BẠN GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM

20 tháng 9 2017

A = 19952 - ( 1995-1) (1995+1)

= 19952 - (19952 - 12)

= 19952 - 19952 +1

= 1

20 tháng 7 2016

1) A=19952-1994.1996

      =19952-(1995-1)(1995+1)

      =19952-(19952-1)

      =1

2) B=98.28-(184-1)(184+1)

      =(9.2)8-[(184)2-1]

      = 188-188+1

      =1

3) C=1632+74.163+372

        =1632+2.37.163+372

      =1632+2.163.37+372

      =(163+37)2.2

      =80000

a: \(=1995^2-\left(1995^2-1\right)=1995^2-1995^2+1=1\)

b: \(=18^8-18^8+1=1\)

c: \(=\left(163+37\right)^2=200^2=40000\)

a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)

31 tháng 8 2020

Giúp mik vs ạ.Mik đag cần

7 tháng 10 2018

 \(M=1995^2-1994.1996\)       

     \(=1995^2-\left(1995-1\right)\left(1995+1\right)\)

     \(=1995^2-\left(1995^2-1\right)=1\)

\(N=9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

   \(=18^8-\left(18^8-1\right)=1\)

\(K=99^3+3.99^2+3.99+1\)

   \(=99^3+3.99^2.1+3.99.1^2+1^3\)

   \(=\left(99+1\right)^3\)

   \(=100^3=1000000\)

Chúc bạn học tốt.

15 tháng 7 2020

Bài làm:

c) \(M=1995^2-1994.1996=1995^2-\left(1995-1\right)\left(19995+1\right)=1995^2-1995^2+1^2=1\)

d) \(N=9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-18^8+1^2=1\)

e) \(K=99^3+3.99^2+3.99+1=\left(99+1\right)^3=100^3=1000000\)

Học tốt!!!!!

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ