Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)
\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)
\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)
c)
Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)
d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)
\(=3-1+\dfrac{1}{4}:2\)
\(=3-1+\dfrac{1}{8}\)
\(=\dfrac{17}{8}\)
a,
\(\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}........\dfrac{-99}{100}.\dfrac{-120}{121}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.........\dfrac{9.11}{10^2}.\dfrac{10.12}{11^2}\)
\(=\dfrac{1.2.3.4.....10.3.4.5.6......11.12}{2^2.3^2........11^2}\)
\(=\dfrac{1.2.11.12}{2^2.11^2}=\dfrac{12}{22}\)
\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\\ \Rightarrow S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)
Đặt \(M=2^{2009}+2^{2008}+...+2+1\)
\(\Rightarrow S=2^{2010}-M\)
* Tính M
\(M=2^{2009}+2^{2008}+...+2+1\\ \Rightarrow2^0+2^1+...+2^{2008}+2^{2009}\\ \Rightarrow2S=2^1+2^2+...+2^{2009}+2^{2010}\\ \Rightarrow2S-S=\left(2^1+2^2+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\\ \Rightarrow S=2^{2010}-2^0=2^{2010}-1\)Thay M vào S, ta được :
\(S=2^{2010}-\left(2^{2010}-1\right)\\ \Rightarrow S=2^{2010}-2^{2010}+1\\ \Rightarrow S=1\)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right)\left(\dfrac{1}{2016}-1\right)\left(\dfrac{1}{2017}-1\right)\\ A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)...\left(-\dfrac{2014}{2015}\right)\left(-\dfrac{2015}{2016}\right)\left(-\dfrac{2016}{2017}\right)\\ A=\dfrac{1.2.3.4...2014.2015.2016}{2.3.4...2015.2016.2017}=\dfrac{1}{2017}\)
\(B=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right)\left(-1\dfrac{1}{2016}\right)\left(-1\dfrac{1}{2017}\right)\\ B=\left(-\dfrac{3}{2}\right)\left(-\dfrac{4}{3}\right)\left(-\dfrac{5}{4}\right)...\left(-\dfrac{2016}{2015}\right)\left(-\dfrac{2017}{2016}\right)\left(-\dfrac{2018}{2017}\right)\\ B=\dfrac{3.4.5...2016.2017.2018}{2.3.4...2015.2016.2017}=\dfrac{2018}{2}=1009\)
\(M=A.B=\dfrac{1}{2017}.1009=\dfrac{1009}{2017}\)
\(A=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-2016}{2017}=\dfrac{1}{2017}\)
\(B=\dfrac{-3}{2}\cdot\dfrac{-4}{3}\cdot...\cdot\dfrac{-2018}{2017}=\dfrac{2018}{2}=1009\)
\(A\cdot B=\dfrac{1009}{2017}\)
\(a.\)
\(\left[6.\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6.\dfrac{1}{9}+1+1\right]:\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right):\left(-\dfrac{4}{3}\right)\)
\(=\left(\dfrac{8}{3}\right).\left(-\dfrac{3}{4}\right)\)
\(=-2\)
\(b.\)
\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)
\(=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\)
\(=\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}\)
\(=\dfrac{72}{5}\)
Thực hiện các phép tính:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113.
Hướng dẫn làm bài:
a) 9,6.212−(2.125−1512):149,6.212−(2.125−1512):14
=9,6.52−(250−1712)×4=9,6.52−(250−1712)×4
=4,8.5−(1000−173)=4,8.5−(1000−173)
=24−1000+173=24−1000+173
=−976+173=−976+173
=−97013=−97013
b) 518−1,456:725+4,5.45518−1,456:725+4,5.45;
=518−1,456×257+92.45=518−1,456×257+92.45
=518−0,208×25+185=518−0,208×25+185
=518−5,2+185=518−5,2+185
=25−468+32490=25−468+32490
=−11990=−11990
c) (12+0,8−113).(2,3+4725−1,28)(12+0,8−113).(2,3+4725−1,28)
=(12+45−43).(2310+10725−3225)=(12+45−43).(2310+10725−3225)
=(15+24−4030).(2310+10725−3225)=(15+24−4030).(2310+10725−3225)
=(15+24−4030).(115+214−6450)=(15+24−4030).(115+214−6450)
=−130.26550=−130.26550
=−53300=−53300
d) (−5).12:[(−14)+12:(−2)]+113(−5).12:[(−14)+12:(−2)]+113
=−60:[14+12×(−12)]+1.13=−60:[14+12×(−12)]+1.13
=−60:[−14−14]+113=−60:[−14−14]+113
=−60:(12)+113=−60:(12)+113
=120+113=120+113
=12113
a) \(9,6.2\dfrac{1}{2}-\left(2.125-1\dfrac{5}{12}\right):\dfrac{1}{4}\)
\(=9,6.\dfrac{5}{2}-\left(250-\dfrac{17}{12}\right).4\)
\(=4,8.5-\left(1000-\dfrac{17}{3}\right)\)
\(=24-1000+\dfrac{17}{3}\)
\(=-976+\dfrac{17}{3}=-970\dfrac{1}{3}\)
b) \(\dfrac{5}{18}-1,456:\dfrac{7}{25}+4,5.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-1,456.\dfrac{25}{7}+\dfrac{9}{2}.\dfrac{4}{5}\)
\(=\dfrac{5}{18}-0,208.25+\dfrac{18}{5}\)
\(=\dfrac{5}{18}-5,2+\dfrac{18}{5}\)
\(=-\dfrac{119}{90}\)
c) \(\left(\dfrac{1}{2}+0,8-1\dfrac{1}{3}\right).\left(2,3+4\dfrac{7}{25}-1,28\right)\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}-\dfrac{4}{3}\right).\left(\dfrac{23}{10}+\dfrac{107}{25}-\dfrac{32}{25}\right)\)
\(=-\dfrac{1}{30}.\dfrac{265}{50}=-\dfrac{53}{300}\)
d) \(\left(-5\right).12:\left[\left(-\dfrac{1}{4}\right)+\dfrac{1}{2}:\left(-2\right)\right]+1\dfrac{1}{3}\)
\(=-60:\left[\dfrac{1}{4}+\dfrac{1}{2}.\dfrac{-1}{2}\right]+1.\dfrac{1}{3}\)
\(=-60:\left[-\dfrac{1}{4}-\dfrac{1}{4}\right]+1\dfrac{1}{3}\)
\(=-60:\left(\dfrac{1}{2}\right)+1\dfrac{1}{3}\)
\(=121\dfrac{1}{3}\)
\(A=\left(-2\right)\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2008}\right)\)
\(A=-2.\dfrac{-3}{2}.\dfrac{-4}{3}.\dfrac{-5}{4}.......\dfrac{-2009}{2008}\)
\(A=\dfrac{-2}{1}.\dfrac{-3}{2}.\dfrac{-4}{3}.\dfrac{-5}{4}......\dfrac{-2009}{2008}\)
Từ \(-2\) đến \(-2009\) có số số hạng là:
\(\left(2009-2\right):1+1=2008\)
\(2008\) là số chẵn nên:
\(A=\dfrac{2.3.4.5.....2009}{1.2.3.4.....2008}\)
\(A=2009\)