Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{47.49}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)
\(=\frac{1}{3}-\frac{1}{49}\)
\(=\frac{46}{147}\)
Vậy \(Q=\frac{46}{147}\)
Ta có : \(\frac{2}{3}Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{47.49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}Q=\frac{1}{3}-\frac{1}{49}=\frac{49}{147}-\frac{3}{147}=\frac{46}{147}\)
\(\Rightarrow Q=\frac{46}{147}\div\frac{2}{3}=\frac{138}{294}=\frac{23}{49}\)
Vậy ...
\(C=\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\)
\(\Rightarrow\frac{2}{3}C=\frac{2}{3}\cdot\left(\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{47\cdot49}\right)\)
\(\Rightarrow\frac{2}{3}C=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{47\cdot49}\)
\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{47}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}C=\frac{1}{3}-\frac{1}{49}\)
\(\Rightarrow\frac{2}{3}C=\frac{46}{147}\)
\(\Rightarrow C=\frac{46}{147}:\frac{2}{3}\)
\(\Rightarrow C=\frac{23}{49}\)
3/3.5+3/5.7+3/7.9+.....+3/47.49
=1-1/5+1/5-1/7+...+1/47-1/49
=1-1/49
=48/49
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
\(=3.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(=3.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
\(=3.\dfrac{46}{147}\)
\(=\dfrac{46}{49}\)
\(\dfrac{3}{3.5}+\dfrac{3}{5.7}+...+\dfrac{3}{47.49}\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
=\(\dfrac{3}{2}.\dfrac{46}{147}\)
=\(\dfrac{23}{49}\)
\(F=\dfrac{49}{2.9}+\dfrac{49}{9.16}+............+\dfrac{49}{65.72}\)
\(\Leftrightarrow F=\dfrac{7^2}{2.9}+\dfrac{7^2}{9.16}+............+\dfrac{7^2}{65.72}\)
\(\Leftrightarrow F=7\left(\dfrac{7}{2.9}+\dfrac{7}{9.16}+.............+\dfrac{7}{65.72}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...........+\dfrac{1}{65}-\dfrac{1}{75}\right)\)
\(\Leftrightarrow F=7\left(\dfrac{1}{2}-\dfrac{1}{72}\right)\)
\(\Leftrightarrow F=7.\dfrac{35}{72}=\dfrac{245}{72}\)
\(G=\dfrac{3}{1.3}+\dfrac{3}{3.5}+...........+\dfrac{3}{47.49}\)
\(\Leftrightarrow G=\dfrac{3.2}{1.3.2}+\dfrac{3.2}{3.5.2}+........+\dfrac{3.2}{47.49}\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{47.49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}\left(1-\dfrac{1}{49}\right)\)
\(\Leftrightarrow G=\dfrac{3}{2}.\dfrac{48}{49}=\dfrac{72}{49}\)
Đặt \(A=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)
\(\Rightarrow A=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)
Đặt A = \(\dfrac{3}{3.5}+\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{47.49}\)
2A = \(\dfrac{3.2}{3.5}+\dfrac{3.2}{5.7}+\dfrac{3.2}{7.9}+...+\dfrac{3.2}{47.49}\)
2A = 3\(\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{47.49}\right)\)
2A = 3 \(\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
2A = 3 \(\left(\dfrac{1}{3}-\dfrac{1}{49}\right)\)
2A = 3 . \(\dfrac{46}{147}\)
2A = \(\dfrac{46}{49}\)
=> A = \(\dfrac{46}{49}\) : 2
=> A = \(\dfrac{23}{49}\)
thanks