Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{12x+3}{3\left(x^2+3\right)}=\frac{4\left(x^2+3\right)-4x^2+12x-9}{3\left(x^2+3\right)}=\frac{4}{3}-\frac{\left(2x-3\right)^2}{3\left(x^2+3\right)}\le\frac{4}{3}\)
\(\Rightarrow M_{max}=\frac{4}{3}\) khi \(x=\frac{3}{2}\)
\(M=\frac{-\left(x^2+3\right)+x^2+4x+4}{x^2+3}=-1+\frac{\left(x+2\right)^2}{x^2+3}\ge-1\)
\(M_{min}=-1\) khi \(x=-2\)
Ta có : \(M=\frac{4x+1}{x^2+3}=\frac{\left(x^2+4x+4\right)-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Vậy GTNN của M là -1 \(\Leftrightarrow\)x = -2
\(M=\frac{4x+1}{x^2+3}=\frac{\frac{4}{3}\left(x^2+3\right)-\frac{4}{3}x^2+4x-3}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x^2-2.\frac{3}{2}x+\frac{9}{4}\right)}{x^2+3}=\frac{4}{3}-\frac{\frac{4}{3}\left(x-\frac{3}{2}\right)^2}{x^2+3}\le\frac{4}{3}\)
Vậy GTLN của M là \(\frac{4}{3}\)\(\Leftrightarrow\)x = \(\frac{3}{2}\)
M=(8x+3)/(4x^2+1)
M = ( - 4x^2 - 1 + 4x^2 + 8x + 4)/(4x^2 +1)
M= -1 + (2x +2)^2/(4x^2 +1) ≥ -1
=> min M = -1 khi x = -1
mặt khác:
M = -1 + (2x +2)^2/(4x^2 +1)
M = 4 - 5 + (2x +2)^2/(4x^2 +1)
M = 4 - ( 20x^2 + 5 - 4x^2 - 8x - 4)/(4x^2 +1)
M = 4 - (16x^2 - 8x +1)/(4x^2 +1)
M = 4 - (4x - 1)^2/(4x^2 +1) ≤ 4
=> max M = 4 khi x = 1/4
Đặt A=\(\frac{3-4x}{x^2+1}\)
*Tìm GTNN:
A = \(\frac{3-4x}{x^2+1}\) = \(\frac{x^2-4x+4-x^2-1}{x^2+1}=\frac{\left(x-2\right)^2-\left(x^2+1\right)}{x^2+1}\) = \(\frac{\left(x-2\right)^2}{x^2+1}-1\)
Vì \(\frac{\left(x-2\right)^2}{x^2+1}\ge0\) ∀ x => \(\frac{\left(x-2\right)^2}{x^2+1}-1\) ≥ -1 ∀ x hay A ≥ -1 ∀ x
Dấu "=" xảy ra ⇔ x - 2 = 0 ⇔ x = 2
Vậy minA = -1 ⇔ x = 2
*Tìm GTLN:
A = \(\frac{3-4x}{x^2+1}\) = \(\frac{-4x^2-4x-1+4x^2+4}{x^2+1}=\frac{-\left(2x+1\right)^2+4\left(x^2+1\right)}{x^2+1}\)=\(\frac{-\left(2x+1\right)^2}{x^2+1}+4\)
Vì \(\frac{-\left(2x-1\right)^2}{x^2-1}\) ≤ 0 ∀ x => \(\frac{-\left(2x+1\right)^2}{x^2+1}+4\) ≤ 4 ∀ x hay A ≤ 4 ∀ x
Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = \(\frac{-1}{2}\)
Vậy maxA = 4 ⇔ x = \(\frac{-1}{2}\)
\(B=\frac{4x+2}{2\left(x^2+2\right)}=\frac{-\left(x^2+2\right)}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{x^2+2}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{x^2+2}\ge-\frac{1}{2}\)
\(B=\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)
\(C=\frac{-\left(x^2+1\right)}{x^2+1}+\frac{x^2+4x+4}{x^2+1}=-1+\frac{\left(x+2\right)^2}{x^2+1}\ge-1\)
\(C=\frac{4x^2+4}{x^2+1}-\frac{4x^2-4x+1}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\le4\)
\(M=\dfrac{4x+1}{x^2+3}\)
\(M+1=\dfrac{4x+1}{x^2+3}+\dfrac{x^2+3}{x^2+3}\)
\(M+1=\dfrac{x^2+4x+4}{x^2+3}=\dfrac{\left(x+2\right)^2}{x^2+3}\ge0\)
\(\Rightarrow M\ge-1\Leftrightarrow x=-2\)
Vậy MINM=-1<=>x=-2
C2:\(M=\dfrac{4x+1}{x^2+3}\)
\(\Leftrightarrow Mx^2+3M=4x+1\)
\(\Leftrightarrow Mx^2-4x+3M-1=0\left(1\right)\)
+)Xét M=0=>\(x=\dfrac{-1}{4}\)
+Xét \(M\ne0\)
=>Để pt(1) có nghiệm thì \(\Delta'=\left(-2\right)^2-M\left(3M-1\right)\ge0\)
\(\Leftrightarrow4-3M^2+M\ge0\)
\(\Leftrightarrow-1\le M\le\dfrac{4}{3}\)
\(\Rightarrow MINM=-1\Leftrightarrow x=-2\)
\(MAXM=\dfrac{4}{3}\Leftrightarrow x=\dfrac{3}{2}\)
Băng Băng 2k6: P2 m làm là miền giá trị của lớp 9, lớp 8 chưa học Delta nên không dùng được nhé!
Đơn giản lắm!
Tìm min A:
\(A=\frac{4x+1}{4x^2+2}=\frac{\left(x+1\right)^2}{2x^2+1}-\frac{1}{2}\ge-\frac{1}{2}\)
Đẳng thức xảy ra khi \(x=-1\)
Tìm max A:
\(A=\frac{4x+1}{4x^2+2}=-\frac{\left(2x-1\right)^2}{2\left(2x^2+1\right)}+1\le1\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)
Vậy....
----------------------------------------------------------------------------------------------------
Tìm min B:
\(B=\frac{4x+5}{x^2+2x+6}=\frac{\left(2x+7\right)^2}{5\left(x^2+2x+6\right)}-\frac{4}{5}\ge-\frac{4}{5}\)
Đẳng thức xảy ra khi \(x=-\frac{7}{2}\)
Tìm max B:
\(B=\frac{4x+5}{x^2+2x+6}=-\frac{\left(x-1\right)^2}{x^2+2x+6}+1\le1\)
Đẳng thức xảy ra khi \(x=1\)
Vậy...
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
GTNN
M=\(\frac{x^2-4x+4-x^2-3}{x^2+3}=\frac{\left(x-2\right)^2-\left(x^2+3\right)}{x^2+3}=\frac{\left(x-2\right)^2}{x^2+3}-1\)-1
do\(\frac{\left(x-2\right)^2}{x^2+3}\ge0\)=>GTNN của M=-1
Dấu ''='' xảy ra khi và chỉ khi (x-2)2=0\(\Leftrightarrow x=2\)
VẬY GTNN CỦA M=-1 TẠI X=2
còn GTLN mình nghĩ là ko có. mình ko biết