K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(A=\left(9y^2-6xy+12y\right)+4x^2-16x+2012\)

\(=\left[\left(3y\right)^2-2.3y\left(x-2\right)+\left(x-2\right)^2\right]-\left(x-2\right)^2+4x^2-16x+2012\)

\(=\left(3y-x+2\right)^2+3x^2-12x+2008\)

\(=\left(3y-x+2\right)^2+3\left(x^2-2.x.2+4\right)-3.4+2008\)

\(=\left(3y-x+2\right)^2+3\left(x-2\right)^2+1996\ge1996\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3y-x+2=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=2\end{cases}}\)

\(A=4x^2-6x\left(x-y\right)+3y^2-12y+20\)

\(A=\left(2x\right)^2-2.2x.\frac{3}{2}y+\left(\frac{3}{2}y\right)^2-\frac{9}{4}y^2+3y^2-12y+20\)

\(A=\left(2x-\frac{3}{4}y\right)^2+\frac{3}{4}y^2-12y+432-432+20\)

\(A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{4}y^2-2.\frac{1}{2}.12+12^2\right)-432+20\)

\(\Rightarrow A=\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\)

Ta có:\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2\ge0\\\left(\frac{1}{2}y-12\right)^2\ge0\Rightarrow3\left(\frac{1}{2}y-12\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(2x-\frac{3}{4}y\right)^2+3\left(\frac{1}{2}y-12\right)^2-412\ge-412\)

\(\Rightarrow A_{min}=-412\)đạt được khi

i\(\hept{\begin{cases}\left(2x-\frac{3}{4}y\right)^2=0\\\left(\frac{1}{2}y-12\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-\frac{3}{4}y=0\\\frac{1}{2}y-12=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=\frac{3}{4}y\\\frac{1}{2}y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}x=9\\y=24\end{cases}}}\)

9 tháng 9 2019

Nhân thêm 2 vào F là mọi việc sẽ ez bởi hằng đẳng thức cơ bản:D

31 tháng 7 2019

\(P=x^2+2y^2-2xy-8y+2018\)

   \(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\) 

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)

\(\Rightarrow x=-4\)

Vậy minP=2002 tại  x=-4;y=4

                     

31 tháng 7 2019

a) \(P=x^2+2y^2-2xy-8y+2018\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)

\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)

Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)

Hay \(P\ge2012;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow x=y=4\)

Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)

14 tháng 10 2019

A=3x2 + 9y2 - 6xy - 16x - 12y + 2049

3A=9x2 + 27y2 - 18xy - 48x - 36y + 6147

=(3x-3y-8)2+18y2-84y+6083

=(3x-3y-8)2+2.(3y-7)2+5985>5985

Dấu = xảy ra khi 3y-7=0 và 3x-3y-8=0=>y=7/3 và x=5=>3A=5985=>a=1995

Amin=1995<=>y=7/3 và x=5

mk chỉ tìm được GTNN thôi

14 tháng 10 2019

thank bạn 

NV
20 tháng 3 2019

\(A=x^2+\left(3y\right)^2+4-6xy-12y+4x+x^2-10x+25+1985\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1985\ge1985\)

\(\Rightarrow A_{min}=1985\) khi \(\left\{{}\begin{matrix}x=5\\y=\frac{7}{3}\end{matrix}\right.\)