Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a) Điều kiện : \(x\ne-1.\)
Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)
\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)
\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)
\(=x\left(x+1\right)+1-2x-1\)
\(=x^2-x.\)
Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)
(b) Ta có : \(P=x^2-x\)
\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Bài 1:
a: A=x^2-6x+10
=x^2-6x+9+1
=(x-3)^2+1>=1
Dấu = xảy ra khi x=3
b: \(B=3x^2-12x+1\)
=3(x^2-4x+1/3)
=3(x^2-4x+4-11/3)
=3(x-2)^2-11>=-11
Dấu = xảy ra khi x=2
2/
a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)
Dấu "=" xảy ra khi x=-3/2
Vậy Amin=-19/2 khi x=-3/2
b,bài này phải tìm min
\(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)
Dấu "=" xảy ra khi x = 2
Vậy Bmin=4 khi x=2
Bài 1:
a: \(=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\)
Dấu '=' xảy ra khi x=3/2
b: \(=4x^2-4x+1+x^2+4x+4=5x^2+5>=5\)
Dấu '=' xảy ra khi x=0
Bài 2:
a: \(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)=-\left(x-1\right)^2+5< =5\)
Dấu = xảy ra khi x=1
b: \(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4< =4\)
Dấu '=' xảy ra khi x=2
\(a,A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
\(=x\left(x-7\right)\left(x-3\right)\left(x-4\right)\)
\(=\left(x^2-7x\right)\left(x^2-7x+12\right)\)
Đặt \(x^2-7x+6=t\)ta có:
\(A=\left(t-6\right)\left(t+6\right)=t^2-36\ge-36\)
Vậy \(Min_A=-36\)khi \(t=0\Leftrightarrow x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)\(b,B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\)
Vậy \(Min_B=2\)khi \(\left[{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
\(c,C=x^2+y^2-3x+3y\)
\(=\left(x^2-3x+\dfrac{9}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)-\dfrac{9}{2}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge\dfrac{-9}{2}\)
Vậy \(Min_C=\dfrac{-9}{2}\)khi \(\left[{}\begin{matrix}x-\dfrac{3}{2}=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
nếu bạn tả lời vào lúc sớm vào hôm qua thi tốt quá
mình đi học thêm lúc tối qua thấy giải lun r
Bài 6:
a) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(5x\left(x-3\right)-x+3=0\)
\(\Leftrightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
c) \(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(\Leftrightarrow3x^2-15x-2x-3x^2+2+3x=30\)
\(\Leftrightarrow-14x+2=30\)
\(\Leftrightarrow-14x=28\)
\(\Leftrightarrow x=-2\)
d) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+3x+2x+6-x^2-5x+2x+10=0\)
\(\Leftrightarrow2x+16=0\)
\(\Leftrightarrow2x=-16\)
\(\Leftrightarrow x=-8\)
\(B=x\left(2x-1\right)=2x^2-x=2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{1}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(minB=-\dfrac{1}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(C=x\left(3x+4\right)=3x^2+4x=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minC=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
`B=x(2x-1)`
`=2x(x-1/2)`
`=2(x^2-1/2x)`
`=2(x^2-1/2x+1/16)-1/8`
`=2(x-1/4)^2-1/8>=-1/8`
Dấu "=" xảy ra khi `x=1/4`
`C=x(3x+4)`
`=3x(x+4/3)`
`=3(x^2+4/3x)`
`=3(x^2+4/3x+4/9)-4/3`
`=3(x+2/3)^2-4/3>=-4/3`
Dấu "=" xảy ra khi `x=-2/3`