Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có vtpt của d1 : n=(1;2) và vtpt của d2: n'=(2;-1)
ta có cos\(\alpha\)=\(\dfrac{|\overrightarrow{n}\times\overrightarrow{n'}|}{\overrightarrow{|n|}\times|\overrightarrow{n'}|}\)=\(\dfrac{\left(1\times2\right)-\left(2\times1\right)}{\sqrt{1^2+2^2}\times\sqrt{\left(-1\right)^2+2^2}}\)=0
=>\(\alpha\)=\(90^0\)
Lời giải
Hệ số góc d1: k1=-1/2
hệ số góc d2: k2 =2
\(k_1.k_2=-1\) => d1 vuông góc với d2
góc d1 và d2 =90 độ
a) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\)và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 2} \right),\overrightarrow {{n_2}} = \left( {3; - 1} \right)\)
Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)
b) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}} = \left( {5; - 1} \right),\overrightarrow {{n_2}} = \left( {1;5} \right)\)
Ta có \({a_1}{a_2} + {b_1}{b_2} = 5.1 + ( - 1).5 = 0\)
Suy ra \(\left( {{d_1},{d_2}} \right) = 90^\circ \)
c) Ta có vectơ chỉ phương của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt là \(\overrightarrow {{u_1}} = \left( {2; 4} \right),\overrightarrow {{u_2}} = \left( {1;2} \right)\)
\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.1+4.2} \right|}}{{\sqrt {{2^2} + {{ { 4} }^2}} \sqrt {{1^2} + {{{ 2}}^2}} }} = 1 \Rightarrow \left( {{d_1},{d_2}} \right) = 0^\circ \)
a) Xét hệ \(\left\{{}\begin{matrix}4x-10y+1=0\\x+y+2=0\end{matrix}\right.\)
D = 4.1 = 10.1 = -6 ≠ 0
Vậy d1 và d2 cắt nhau
b) Tương tự, ta có: d1 :\(12x-6y+10=0\) ;
d2= \(2x-y-7=0\)
D = 12 . (-1) - (-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) - (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
c) Tương tự, ta có d1: \(8x+10y-12=0\)
d2:\(4x+5y-6=0\)
D = 8 . 5 - 4 . 10 = 0
Dx = 10. (-6) - (-12) . 5 = 0
Dy = (-12) . 4 - (-6) . 8 = 0
Vậy d1 trùng d2.
Vecto pháp tuyến của đường thẳng \({d_1}\) là: \(\overrightarrow {{n_1}} = \left( {2; - 1} \right)\)
Vecto pháp tuyến của đường thẳng \({d_2}\) là: \(\overrightarrow {{n_2}} = \left( {1; - 3} \right)\)
Ta có: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 3} \right)} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)
Vậy \(\left( {{d_1},{d_2}} \right) = {45^o}\)
Đường thẳng \(d_2\) có phương trình tổng quát là :
\(3x+4y-2=0\)
Theo định lý, đường phân giác các góc tạo bởi \(d_1,d_2\) có phương trình dạng :
\(\frac{4x+3y-5}{\sqrt{4^2+3^2}}=\pm\frac{3x+4y-5}{\sqrt{3^2+4^2}}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+y-1=0\left(l_1\right)\\x-y-3=0\left(l_2\right)\end{array}\right.\)
Gọi \(\alpha_k\) là góc giữa \(l_k\) và \(d_1\), \(k=1,2\) khi đó
\(\cos\alpha_1=\frac{\left|4.1+3.1\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+1^2\right)}}=\frac{7}{5\sqrt{2}}\)
và
\(\cos\alpha_2=\frac{\left|4.1+3.\left(-1\right)\right|}{\sqrt{\left(4^2+3^2\right)\left(1^2+\left(-1^2\right)\right)}}=\frac{1}{5\sqrt{2}}\)
Suy ra \(\cos\alpha_1>\cos\alpha_2\) . Từ đó hàm số \(y=\cos x\) nghịch biến trên \(\left[0;\frac{\pi}{2}\right]\) nên \(0< \alpha_1< \alpha_2< \frac{\pi}{2}\)
Suy ra \(l_1\) là phân giác góc nhọn tạo bởi hai đường thẳng \(d_1;d_2\) đã cho
A B C D u v
Hai đường thẳng \(d_1;d_2\) tại M có tọa độ (x;y) thỏa mãn hệ phương trình
\(\begin{cases}4x+3y-5=0\\x=-2-4t\\y=2+3t\end{cases}\)
Giải hệ ta được M(2;-1). Đường thẳng \(d_2\) có vecto chỉ phương \(\overrightarrow{v}=\left(-4;3\right)\) và đường thẳng \(d_1\) có vecto chỉ phương \(\overrightarrow{u}=\left(-3;4\right)\)
Do \(\overrightarrow{u}.\overrightarrow{v}=\left(-3\right)\left(-4\right)+4.3=24>0\) nên \(\widehat{\left(\overrightarrow{u};\overrightarrow{v}\right)}< \frac{\pi}{2}\)
Vậy đường phân giác của góc nhọn tạo bởi \(d_1;d_2\) đi qua \(M\left(2;-1\right)\)
và có vecto chỉ phương \(\overrightarrow{\omega}=\frac{1}{5}.\overrightarrow{u}+\frac{1}{5}.\overrightarrow{v}=\frac{7}{5}\left(-1;1\right)\)
Suy ra có phương trình :
\(\frac{x-2}{-1}=\frac{y+1}{1}\) hay \(x+y-1=0\)
ta có:nd1=(1;-2)
nd2=(3;-1)
Có a là góc giữa hai đường thẳng d1 và d2:
⇒Cos a+\(\left|cos\left(nd1;nd2\right)\right|\)=\(\dfrac{\left|3+2\right|}{\sqrt{1^2+2^2}.\sqrt{3^2+1^2}}\)
=\(\dfrac{5}{5\sqrt{2}}\)=\(\dfrac{\sqrt{2}}{2}\)
⇒Cos a=\(\dfrac{\sqrt{2}}{2}\)=45 độ