Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)
\(\frac{45^{10}.5^{20}}{75^{15}}\)
\(=\frac{5.3^{20}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{5^{21}.3^{20}}{5^{30}.3^{15}}=\frac{5^{21}.3^{15}.3^5}{5^{21}.5^9.3^{15}}=\frac{3^5}{5^9}\).
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(9.5\right)^{10}.5^{20}}{\left(3.25\right)^{15}}\)
\(=\frac{9^{10}.5^{10}.5^{20}}{3^{15}.25^{15}}\)
\(=\frac{\left(3^2\right)^{10}.5^{10}.5^{20}}{3^{15}.\left(5^2\right)^{15}}\)
\(=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}\)
\(=\frac{3^{20}}{3^{15}}\)
\(=3^5\)
\(=243\)
\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\frac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\frac{5^{30}.3^{20}}{3^{15}.5^{30}}=\frac{3^5}{1}=3^5=243\)
Ta có: 4510.520=(32.5)10.(52)10
=320.(52)5.2510
=315.35.255.2510
=35(315.2515)
=35.7515
Do đó: \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{3^5.75^{15}}{7^{15}}=3^5\)
\(\frac{45^{10}\times5^{20}}{75^{15}}=243\)
mk ko nhớ cách giải, chỉ có kết quả, nếu đúng k cho mk nha
\(\frac{45^{10}20^{10}}{75^{15}}\)=\(\frac{1125^{10}}{75^5.75^{10}}\)=\(\frac{1125^{10}}{75}\)=\(\frac{1}{75^5}\)=\(\frac{15^{10}}{75^5}\)=\(\frac{15^5.15^5}{75^5}\)=\(\frac{15^5}{75}\).\(15^5\)=\(\frac{1^5}{3}\).\(15^5\)=\(\frac{1}{3}.15^5\)=\(^{5^5}\)=3125
Ta có : \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{9^{10}.5^{10}.5^{20}}{3^{15}.25^{15}}=\frac{\left(3^2\right)^{10}.5^{30}}{3^{15}.\left(5^2\right)^{15}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5\)
a)\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\frac{\left(3^2\right)^{10}.5^{10}.5^{20}}{3^{15}.\left(5^2\right)^{15}}=\frac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
b)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(3.2\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{3^6.2^6.2^9}=\frac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
b)\(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(2.0,4\right)^5}{\left(0,4\right)^6}=\frac{2^5.\left(0,4\right)^5}{\left(0,4\right)^6}=\frac{2^5}{0,4}=\frac{2^5}{\frac{2}{5}}=\frac{2^4}{5}=\frac{16}{5}\)
c)\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^{12}}{3^6.2^6.2^9}=3^6\)
a)\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{15^{10}.3^{10}.5^{20}}{5^{15}.15^{15}}=\frac{3^{10}.5^5}{15^5}=\frac{3^{10}.5^5}{5^5.3^5}=3^5\)
a) \(\frac{45^{10}.5^{20}}{75^{15}}\)
=
\(\frac{\left(5.9\right)^{10}.5^{20}}{\left(5.15\right)^{15}}\)
= \(\frac{5^{10}.9^{10}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.3^{20}.5^{20}}{5^{15}.15^{15}}\)
= \(\frac{5^{10}.15^{20}}{5^{15}.15^{15}}\)
= \(\frac{15^5}{5^5}\)
= \(\frac{3^5.5^5}{5^5}\)
= \(3^5\)
b) \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}\)
= \(\frac{\left(0,4\right)^5.2^5}{\left(0,4\right)^6}\)
= \(\frac{2^5}{0,4}\)
= \(2^5\) : 0,4
(=) 32 : \(\frac{2}{5}\)
= 90
c) \(\frac{2^{15}.9^4}{6^6.8^3}\)
= \(\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}\)
= \(\frac{2^{15}.3^8}{2^6.3^6.2^9}\)
= \(3^2\)
\(\frac{45^0.5^{20}}{75^{15}}=\frac{5^{20}}{75^{15}}=\frac{5^{20}}{5^{15}.3^{15}.5^{15}}=\frac{1}{3^{15}.5^{10}}\)
1/675