Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
\(\lim\limits_{n\rightarrow\infty}\dfrac{2-5^{n-2}}{3^n+2\cdot5^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{5^{n-2}}{5^n}}{\dfrac{3^n}{5^n}+2\cdot\dfrac{5^n}{5^n}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{1}{25}}{\left(\dfrac{3}{5}\right)^n+2\cdot1}\)
\(=-\dfrac{1}{25}:2=-\dfrac{1}{50}\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}-4}{3^n\cdot\dfrac{9}{4^n}+1}\)
\(=-\dfrac{4}{1}=-4\)
\(\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-4\cdot2^{n+1}-3}{3\cdot2^n+4^n}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\left(\dfrac{3^n-3-8\cdot2^n}{3\cdot2^n+4^n}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\left(\dfrac{\dfrac{3^n}{4^n}-\dfrac{3}{4^n}-8\cdot\left(\dfrac{2}{4}\right)^n}{3\cdot\left(\dfrac{2}{4}\right)^n+\left(\dfrac{4}{4}\right)^n}\right)\)
\(=\dfrac{0-0-8\cdot0}{3\cdot0+1}=0\)
1:
\(K=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^{n+1}+3^{n+1}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^n\cdot2+3^n\cdot3}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot\dfrac{2^n}{3^n}-1}{\left(\dfrac{2}{3}\right)^n\cdot2+3}\)
\(=-\dfrac{1}{3}\)
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\left(\dfrac{3}{4}\right)^n-4}{\left(\dfrac{3}{4}\right)^n\cdot9+1}=-\dfrac{4}{1}=-4\)
\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)
\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)
\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)
\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)
\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)
\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)
\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)
Vậy giới hạn \(\left(2\right)\) không xác định.
\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)
\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)
\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)
Vậy \(lim\left(3\right)\) không xác định.
2:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n+1}{2^n-1}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{3^n}+\dfrac{1}{3^n}}{\dfrac{2^n}{3^n}-\dfrac{1}{3^n}}=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{3^n}}{\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}}=1\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{7^n+4}{3\cdot7^n+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{4}{7^n}}{3+\left(\dfrac{4}{7}\right)^n}=\dfrac{1}{3}\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{1-4^n}{1+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{1}{4^n}-1}{\dfrac{1}{4^n}+1}=-\dfrac{1}{1}=-1\)
\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^{n+2}}-\dfrac{4^{n+1}}{4^{n+2}}}{\dfrac{3^{n+2}}{4^{n+2}}+\dfrac{4^n}{4^{n+2}}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}.\dfrac{1}{4^2}-\dfrac{4^{n+1}}{4^{n+1}}.\dfrac{1}{4}}{\dfrac{3^{n+2}}{4^{n+2}}+\dfrac{4^n}{4^n}.\dfrac{1}{4^2}}=\dfrac{-\dfrac{1}{4}}{\dfrac{1}{4^2}}=-4\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+3n^2+1-n^3}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+1}{\sqrt[3]{n^3+3n^2+1}+n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{1}{n^2}\right)}{n\left(\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1\right)}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\cdot\left(3+\dfrac{1}{n^2}\right)}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=\lim\limits_{n\rightarrow\infty}n\cdot\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}=\dfrac{3}{2}>0\end{matrix}\right.\)
2:
\(=\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-2n+2n-\sqrt[3]{8n^3+n}\right)\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+1-4n^2}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{8n^3-8n^3-n}{4n^2+2n\cdot\sqrt[3]{8n^3+n}+\left(\sqrt[3]{8n^3+n}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n\cdot n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+\left(n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}\right)^2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n^2\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n^2\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-1}{4n+2n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)
\(=0\)
Lời giải:
1.
\(\lim\limits_{n\to \infty}(\sqrt{n^2+6n}-n)=\lim\limits_{n\to \infty}\frac{6n}{\sqrt{n^2+6n}+n}=\lim\limits_{n\to \infty}\frac{6}{\sqrt{1+\frac{6}{n}}+1}=\frac{6}{1+1}=3\)
2.
\(\lim\limits_{n\to \infty}(\sqrt{n+1}-\sqrt{n-1})=\lim\limits_{n\to \infty}\frac{(n+1)-(n-1)}{\sqrt{n+1}+\sqrt{n-1}}=\lim\limits_{n\to \infty}\frac{2}{\sqrt{n+1}+\sqrt{n-1}}=0\) do $\sqrt{n+1}+\sqrt{n-1}\to \infty$ khi $n\to \infty$
Lời giải:
\(\lim\limits_{n\to \infty}\frac{3^n-4.2^{n-1}-3}{3.2^n+4^n}=\lim\limits_{n\to \infty}\frac{3^n-2.2^n-3}{3.2^n+4^n}\)
\(=\lim\limits_{n\to \infty}\frac{(\frac{3}{4})^n-2(\frac{2}{4})^n-\frac{3}{4^n}}{3(\frac{2}{4})^n+1}=\frac{0-2.0-0}{3.0+1}=0\)