K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^x-\frac{1}{e^x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{e^x\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x.\frac{\sin x}{2x}.e^x}\)

   \(=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x}.\frac{1}{\frac{\sin x}{x}}.\frac{2}{e^x}=1.\frac{1}{1}.\frac{2}{1}=2\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{e^{5x+3}-e^3}{2x}=\lim\limits_{x\rightarrow0}\left(\frac{e^{5x}-1}{5x.\frac{2}{5}}.e^3\right)=\lim\limits_{x\rightarrow0}\left(\frac{e^{5x}-1}{5x}.\frac{5e^3}{2}\right)=1.\frac{5e^3}{2}=\frac{5e^3}{2}\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{2x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+x^3\right)}{x^3.\frac{2}{x^2}}=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+x^3\right)}{x^3}.\frac{x^3}{2}\right]=1.0=0\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow0}\frac{\ln x-1}{\tan x}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{\frac{\sin x}{\cos x}}=\lim\limits_{x\rightarrow0}\frac{\ln\left(1+2x\right)}{2x.\frac{\sin x}{x}.\frac{1}{2\cos x}}\)

   \(=\lim\limits_{x\rightarrow0}\left[\frac{\ln\left(1+2x\right)}{2x}.\frac{1}{\frac{\sin x}{x}}.2\cos x\right]=1.\frac{1}{1}.2.1=2\)

12 tháng 5 2016

Đặt \(t=x-e\Rightarrow\begin{cases}x=t+e\\x\rightarrow e;t\rightarrow0\end{cases}\)

\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{\ln\left(t+e\right)-\ln e}{t}=\lim\limits_{t\rightarrow0}\frac{\ln\left(\frac{t+e}{e}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{\ln\left(1+\frac{t}{e}\right)}{\frac{t}{e}}\right]=\frac{1}{e}\)

12 tháng 5 2016

Đặt \(t=x-10\Rightarrow\begin{cases}x=t+10\\x\rightarrow t;t\rightarrow0\end{cases}\)

\(\Rightarrow L=\lim\limits_{t\rightarrow0}\frac{lg\left(t+10\right)-lg10}{t}=\lim\limits_{t\rightarrow0}\frac{lg\left(\frac{t+10}{10}\right)}{t}=\lim\limits_{t\rightarrow0}\left[\frac{lg\left(1+\frac{t}{10}\right)}{\frac{t}{10}}.\frac{1}{10}\right]=\frac{1}{10}\)

12 tháng 5 2016

\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x+1}{x-2}\right)^{2x-1}=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{3}{x-2}\right)^{2x-1}\)

Đặt \(\begin{cases}\frac{3}{x-2}=\frac{1}{t}\Rightarrow x=3t+2\\x\rightarrow+\infty;t\rightarrow+\infty\end{cases}\)

\(L=\lim\limits_{x\rightarrow+\infty}\left(1+\frac{1}{t}\right)^{6t+3}=\lim\limits_{x\rightarrow+\infty}\left\{\left[\left(1+\frac{1}{t}\right)^t\right]^6.\left(1+\frac{1}{t}\right)^3\right\}=e^6.1^3=e^6\)

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)

Bài 2:

\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)

\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)

\(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)

\(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)