Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Chia thành nhóm:
Nhóm 1: 3 số
\(\sqrt{1}\leq \sqrt{1},\sqrt{2},\sqrt{3}<\sqrt{4}\)\(\Leftrightarrow 1\leq \sqrt{1},\sqrt{2},\sqrt{3}< 2\)
Do đó, \([\sqrt{1}]=[\sqrt{2}]=[\sqrt{3}]=1\)
Nhóm 2: 5 số\(\sqrt{4} \leq \sqrt{4},\sqrt{5},....,\sqrt{8}<\sqrt{9}\Leftrightarrow 2\leq \sqrt{4},\sqrt{5},...,\sqrt{8}< 3\)
\(\Rightarrow [\sqrt{4}]=[\sqrt{5}]=...=[\sqrt{8}]=2\)
Nhóm 3: 7 số
\(3\leq \sqrt{9}.\sqrt{10},...,\sqrt{15}< \sqrt{16}=4\)
\(\Rightarrow [\sqrt{9}],[\sqrt{10}],....,[\sqrt{15}]=3\)
Nhóm 4: 9 số
\(4\leq \sqrt{16},\sqrt{17},...,\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow [\sqrt{16}]=[\sqrt{17}]=...=[\sqrt{24}]=4\)
Nhóm 5: 11 số
\(5\leq \sqrt{25},\sqrt{26},....\sqrt{35}<\sqrt{36}=6\)
\(\Rightarrow [\sqrt{25}]=[\sqrt{26}]=...=[\sqrt{35}]=5\)
Do đó:
\([\sqrt{1}]+[\sqrt{2}]+....+[\sqrt{35}]=3.1+5.2+7.3+9.4+11.5=125\)
Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)
\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)
Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.
Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)
\(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)
\(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)
\(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)
\(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)
\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3.1+5.2+7.3+9.4+11.5\)
\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3+10+21+36+55\)
\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=125.\)
Chúc bạn học tốt!
Ta có : $[2,3]=2$
$[\dfrac{1}{2}]=0$
$[-4]=-4$
$[-5,16]=-6$
- Ta thấy \([2,3]\) là số nguyên lớn nhất mà không vượt quá 2,3 là số 2.
Vậy \([2,3]\) = 2
- Số nguyên lớn nhất không vượt quá \(\dfrac{1}{2}\) là 0.
Vậy \(\left[\dfrac{1}{2}\right]\) = 0
- Số nguyên lớn nhất không vượt quá -4 là -4
Vậy \(\left[-4\right]\) = -4
- Số nguyên lớn nhất không vượt quá -5,16 là -6
Vậy \(\left[-5,16\right]\) = -6