K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

\(B=\frac{x+1}{x^2-x}+\frac{x+2}{1-x^2}\)

\(B=\frac{-x+1}{-x^4+x^3+x^2-x}\)

\(B=\frac{-x+1}{x\left(-x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(B=\frac{-1}{-x^3+x}\)

Thay \(x=-\frac{1}{3}\) vào biểu thức, ta có:

\(B=\frac{-1}{-\left(-\frac{1}{3}\right)^3+\left(-\frac{1}{3}\right)}=\frac{27}{8}\)

29 tháng 11 2019

thank 

29 tháng 11 2019

A=\(\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)  +\(\frac{x-2}{\left(x-1\right).\left(x^2+x+1\right)}\) 

A=\(\frac{2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{11.2-3}{\left(11-1\right)\left(11^2+11+1\right)}\)=\(\frac{19}{1330}\)

29 tháng 11 2019

\(A=\frac{1}{x^2+x+1}+\frac{x-2}{x^3-1}\)

\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{2x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x-3}{x^3-1}\)

\(=\frac{2.11-3}{11^3-1}=\frac{19}{1330}=\frac{1}{70}\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

13 tháng 11 2018

a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)

\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)

\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)

\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)

b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:

\(|x-\frac{3}{4}|=\frac{5}{4}\)

*TH1: 

\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)

*TH2:

\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)

\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)

c,

\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)

Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

4 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\left(1+\frac{x^2}{x^2+1}\right):\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right)\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\left[\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right]\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x^2+1-2x}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x^2+1}:\frac{x-1}{x^2+1}\)

\(\Leftrightarrow A=\frac{\left(2x^2+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{2x^2+1}{x-1}\)

b) Thay \(x=-\frac{1}{2}\)vào A, ta được :

\(A=\frac{2\left(-\frac{1}{2}\right)^2+1}{-\frac{1}{2}-1}\)

\(\Leftrightarrow A=\frac{\frac{3}{2}}{-\frac{3}{2}}\)

\(\Leftrightarrow A=-1\)

c) Để A < 1

\(\Leftrightarrow2x^2+1< x-1\)

\(\Leftrightarrow2x^2-x+2< 0\)

\(\Leftrightarrow2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{15}{8}< 0\)

\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}< 0\)

\(\Leftrightarrow x\in\varnothing\)

Vậy để \(A< 1\Leftrightarrow x\in\varnothing\)

d) Để A có giá trị nguyên

\(\Leftrightarrow2x^2+1⋮x-1\)

\(\Leftrightarrow2x^2-2x+2x-2+3⋮x-1\)

\(\Leftrightarrow2x\left(x-1\right)+2\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow2\left(x+1\right)\left(x-1\right)+3⋮x-1\)

\(\Leftrightarrow3⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)

12 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0;x\ne2\\x\ne-1\end{cases}}\)

\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)

\(\Leftrightarrow Q=1+\left(\frac{x+1}{x^3+1}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right):\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)

\(\Leftrightarrow Q=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{x\left(x-2\right)}{x^2-x+1}\)

\(\Leftrightarrow Q=1+\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2x^2+4x}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow Q=1+\frac{-2}{x+1}\)

\(\Leftrightarrow Q=\frac{x-1}{x+1}\)

b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(ktm\right)\\x=-\frac{1}{2}\left(tm\right)\end{cases}}\)

Thay \(x=-\frac{1}{2}\)vào Q, ta được :

\(Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}\)

\(\Leftrightarrow Q=\frac{-\frac{3}{2}}{\frac{1}{2}}\)

\(\Leftrightarrow Q=-3\)

c) Để \(Q\inℤ\)

\(\Leftrightarrow x-1⋮x+1\)

\(\Leftrightarrow x+1-2⋮x+1\)

\(\Leftrightarrow2⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)

Vậy để \(Q\inℤ\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ