K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(I=lg\left(\sqrt{81^{\log_35}+27^{\log_936}}+3^{2\log_971}\right)=lg\left(\sqrt{\left(3^4\right)^{\log_35}+\left(3^3\right)^{\log_{3^2}6^2}}+3^{2\log_{3^2}71}\right)\)

   \(=lg\left(\sqrt{3^{\log_35^4}+3^{\log_36^3}}+3^{\log_371}\right)=lg\left(\sqrt{5^4+6^3}+71\right)\)

  \(=lg\left(29+71\right)=lg100=2\)

4 tháng 5 2016

Ta có:

\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;

\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;

\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)

\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)

4 tháng 5 2016

Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)

4 tháng 5 2016

\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\left(\frac{1}{16}\right)^{\frac{3}{4}}+2\left(\frac{8}{27}\right)^{\frac{2}{3}}\)

\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+55+\frac{32}{3}\)

\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\frac{197}{3}\)

\(A=243+\frac{197}{3}\)

\(A=\frac{926}{3}\)

4 tháng 5 2016

Ta có \(A=3^{\frac{3}{2}.\frac{4}{3}}+\left(\frac{1}{2}\right)^{4.\frac{3}{4}}+2\left(\frac{2}{3}\right)^{3.\frac{2}{3}}=3^2+\left(\frac{1}{2}\right)^3+2\left(\frac{2}{3}\right)^2=\frac{721}{72}\)

11 tháng 5 2016

\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)

     \(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)

     \(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)

     \(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)

11 tháng 5 2016

\(F=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)=\log_{3-2\sqrt{2}}\left[\left(3^3\right)^{^{\log_92^2}}+2^{\log_{2^3}3^3}\right]\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\frac{3}{2}\log_32}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\log_32^{\frac{3}{2}}}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(2^{\frac{3}{2}}+3\right)=\log_{\left(3-2\sqrt{2}\right)^{-1}}\left(3-2\sqrt{2}\right)=-1\)

20 tháng 6 2017

-4

4 tháng 5 2016

Ta có :

\(M=\frac{7\ln\left(\sqrt{2}+1\right)^2-64\ln\left(\sqrt{2}+1\right)-50\ln\left(\sqrt{2}+1\right)^{-1}+2}{-3lg5-lg\left(10^{-1}.2^3\right)+6lg\left(10^{-\frac{1}{3}}.2^{\frac{2}{3}}\right)+4lg\left(10.5\right)}\)

    \(=\frac{2}{lg5+1-3lg2-2+4lg2+4}=\frac{1}{2}\)

10 tháng 5 2016

\(M=\sqrt{\left(\frac{1}{25}\right)^{\left(-\frac{3}{2}\right)}-\left(\frac{1}{8}\right)^{\left(-\frac{2}{3}\right)}}=\sqrt{\left(5^{-2}\right)^{-\frac{3}{2}}-\left(2^{-3}\right)^{-\frac{2}{3}}}=\sqrt{5^3-2^2}=\sqrt{121}=11\)

26 tháng 3 2016

a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)

Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)

b) Rút gọn B ta có :

\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)

Do đó :

\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)

11 tháng 5 2016

\(G=lg\left(25^{\log_56}+49^{\log_78}\right)-e^{\ln3}=lg\left[\left(5^2\right)^{\log_56}+\left(7^2\right)^{\log_78}\right]-3\)

   \(=lg\left(5^{\log_56^2}+7^{\log_78^2}\right)-3\)

   \(=lg\left(6^2+8^2\right)-3=lg10^{2-3}=2-3=-1\)