Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có x2 \(\ge\)0 với mọi x
=> x2 + 5 \(\ge\)5 với mọi x
=> (x2 + 5)2 \(\ge\)25 với mọi x
=> (x2 + 5)2 + 4 \(\ge\)29 với mọi x
Dấu "=" xảy ra <=> x2 = 0 <=> x = 0
KL: GTNN của biểu thức = 29 <=> x = 0
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
/X-2/+/5-X/ lớn hơn hoặc bằng /X-2+5-X/=3
(với mọi X)
=> biểu thức trên lớn hơn hoặc bằng 3
=> biểu thức trên nhỏ nhất bằng 3 khi (X-2) và (5-X) cùng dấu
hay (X-2)(5-X) lớn hơn hoặc bằng 0
=>biểu thức trên nhỏ nhất bằng 3 khi 2 bé hơn hoặc bằng x bé hơn hoặc bằng 5
CHÚC BẠN HỌC TỐT
Có x2 \(\ge\)0 với mọi x
=> x2 + 5 \(\ge\)5 với mọi x
=> (x2 + 5)2 \(\ge\)25 với mọi x
=> (x2 + 5)2 + 4 \(\ge\)29 với mọi x
Dấu "=" xảy ra <=> x2 = 0 <=> x = 0
KL: GTNN của biểu thức = 29 <=> x = 0