Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
Bài 1:
a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)
\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)
\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)
b )
\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)
\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)
c)
\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)
\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)
Bài 3:
a) Ta thấy:
\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)
Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)
b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)
Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)
a, \(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\Rightarrow\) \(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(\Rightarrow x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(\Rightarrow x=\dfrac{-1}{6}\)
b, \(25-\left(5-x\right)=-7\)
\(\Rightarrow\) \(5-x=25-\left(-7\right)\)
\(\Rightarrow5-x=32\)
\(\Rightarrow x=5-32\)
\(\Rightarrow x=-27\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{-5}{7}\)
d, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\) \(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0:2\\x=0+\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e, \(\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|-7=-3\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=-3+7\)
\(\Rightarrow\left|\dfrac{1}{2}x-\dfrac{3}{4}\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4+\dfrac{3}{4}\\\dfrac{1}{2}x=-4+\dfrac{3}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{19}{4}\\\dfrac{1}{2}x=\dfrac{-13}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{4}:\dfrac{1}{2}\\x=\dfrac{-13}{4}:\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{19}{2}\\x=\dfrac{-13}{2}\end{matrix}\right.\)
a)\(\dfrac{3}{7}+\dfrac{4}{7}x=\dfrac{1}{3}\)
\(\dfrac{4}{7}x=\dfrac{1}{3}-\dfrac{3}{7}\)
\(\dfrac{4}{7}x=\dfrac{-2}{21}\)
\(x=\dfrac{-2}{21}:\dfrac{4}{7}\)
\(x=\dfrac{-1}{6}\)
b)\(25-\left(5-x\right)=-7\)
\(5-x=25-\left(-7\right)\)
\(5-x=32\)
x= -27
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{-5}{7}\)
d)\(2x\left(x-\dfrac{1}{7}\right)=0\)
⇒\(\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
e)\(|\dfrac{1}{2}x-\dfrac{3}{7}|-7=-3\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=-3+7\)
\(\left|\dfrac{1}{2}x-\dfrac{3}{7}\right|=4\)
⇒\(\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{4}=4\\\dfrac{1}{2}x-\dfrac{3}{4}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=4\dfrac{3}{4}\Rightarrow x=9\dfrac{1}{2}=\dfrac{19}{2}\\\dfrac{1}{2}x=-3\dfrac{1}{4}\Rightarrow x=\dfrac{-13}{2}\end{matrix}\right.\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
câu 1 \(A=\dfrac{3^2}{5^2}.5^2-\dfrac{9^3}{4^3}:\dfrac{3^3}{4^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{\left(3^2\right)^3}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}\)
\(A=\dfrac{3^2}{5^2}.5^2-\dfrac{3^6}{4^3}.\dfrac{4^3}{3^3}+\dfrac{1}{2}=3^2-3^3+\dfrac{1}{2}=-18+\dfrac{1}{2}=-\dfrac{35}{2}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{22}.2\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{4^4}{8^2}\right)^{2009}\)
\(B=\left[\dfrac{4}{11}+\dfrac{7}{11}\right]^{2010}-\left(\dfrac{1}{2^2}.\dfrac{\left(2^2\right)^4}{\left(2^3\right)^2}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{1}{2^2}.\dfrac{2^8}{2^6}\right)^{2009}\)
\(B=1^{2010}-\left(\dfrac{2^8}{2^8}\right)^{2009}\)
\(B=1^{2010}-1^{2009}=1-1=0\)
câu 2
a) \(2x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2x=\dfrac{4}{3}+\dfrac{5}{4}\)
\(\Leftrightarrow2x=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{24}\)
b) \(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
x-5/1+x-5/2+x-5/3+x-5/4=0
=>(x-5)(1+1/2+1/3+1/4)
vì 1+1/2+1/3+1/4 khác 0
=>x-5=0=>x=5
\(\dfrac{9^4.8^6}{6^{10}.16^3}=\dfrac{\left(3^2\right)^4.\left(2^3\right)^6}{3^{10}.2^{10}.\left(2^4\right)^3}=\dfrac{3^8.2^{18}}{3^{10}.2^{22}}=\dfrac{1}{9.4}=\dfrac{1}{36}\)
\(\left(\dfrac{4}{5}x-1\right).\left(6x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{4}{5}x-1=0\\6x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{4}{5}x=1\\6x=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{-1}{12}\end{matrix}\right.\)
vậy \(x\in\left\{\dfrac{-1}{12};\dfrac{5}{4}\right\}\)
\(\left(2x+1\right)^2=25\)
\(\left(2x+1\right)^2=\left(\pm5\right)^2\)
\(2x+1=\pm5\)
+)\(2x+1=5\Rightarrow2x=4\Rightarrow x=2\)
+)\(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-3\)
vậy \(x\in\left\{-3;2\right\}\)
\(x:8,5=0,69:\left(-1,15\right)\)
\(\Rightarrow x:8,5=-0,6\)
\(\Rightarrow x=-0,6.8,5=-5,1=\dfrac{-51}{10}\)
vậy \(x=\dfrac{-51}{10}\)
a,
\(\dfrac{1}{4}x-1+\dfrac{1}{3}\left(\dfrac{5}{2}x-7\right)-\left(\dfrac{5}{8}x-2\right)=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x-1+\dfrac{5}{6}x-\dfrac{7}{3}-\dfrac{5}{8}x+2=\dfrac{7}{2}\)
\(\Rightarrow\dfrac{1}{4}x+\dfrac{5}{6}x-\dfrac{5}{8}x=\dfrac{7}{2}+1+\dfrac{7}{3}-2\)
\(\Rightarrow\dfrac{11}{24}x=\dfrac{29}{6}\)
\(\Rightarrow x=\dfrac{116}{11}\)
b,
\(\left|2-\dfrac{3}{2}x\right|-4=x+2\)
\(\Rightarrow\left|2-\dfrac{3}{2}x\right|=x-2\)
\(\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-\left(x+2\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-\dfrac{3}{2}x=x+2\\2-\dfrac{3}{2}x=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2-2=x+\dfrac{3}{2}x\\2+2=-x+\dfrac{3}{2}x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{5}{2}x=0\\\dfrac{1}{2}x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
c,
\(-3\left(\dfrac{2}{5}x-\dfrac{1}{5}\right)-x\left(x-\dfrac{1}{2}\right)=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{6}{5}x+\dfrac{3}{5}-x^2+\dfrac{1}{2}x=\dfrac{1}{6}-x^2\)
\(\Rightarrow-\dfrac{7}{10}x=\dfrac{1}{6}-\dfrac{3}{5}-x^2+x^2\)
\(\Rightarrow-\dfrac{7}{10}x=-\dfrac{13}{30}\Leftrightarrow x=\dfrac{13}{21}\)
a) \(x+\dfrac{3}{10}=\dfrac{-2}{5}\)
\(x=\dfrac{-2}{5}-\dfrac{3}{10}\)
\(x=\dfrac{-7}{10}\)
b) \(x+\dfrac{5}{6}=\dfrac{2}{5}-\left(-\dfrac{2}{3}\right)\)
\(x+\dfrac{5}{6}=\dfrac{2}{5}+\dfrac{2}{3}\)
\(x+\dfrac{5}{6}=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}-\dfrac{5}{6}\)
\(x=\dfrac{7}{30}\)
c) \(1\dfrac{2}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\dfrac{7}{5}x=-\dfrac{4}{5}-\dfrac{3}{7}\)
\(\dfrac{7}{5}x=\dfrac{-43}{35}\)
\(\Rightarrow x=\dfrac{-43}{49}\)
d) \(\left[x+\dfrac{3}{4}\right]-\dfrac{1}{3}=0\)
\(\left[x+\dfrac{3}{4}\right]=0+\dfrac{1}{3}\)
\(\left[x+\dfrac{3}{4}\right]=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}-\dfrac{3}{4}\)
\(x=\dfrac{-5}{12}\)
e) \(\left[x+\dfrac{4}{5}\right]-\left(-3,75\right)=-\left(-2,15\right)\)
\(\left[x+\dfrac{4}{5}\right]+3,75=2,15\)
\(x+\dfrac{4}{5}=2,15-3,75\)
\(x+\dfrac{4}{5}=-\dfrac{8}{5}\)
\(x=\dfrac{-8}{5}-\dfrac{4}{5}\)
\(x=\dfrac{-12}{5}\)
f) \(\left(x-2\right)^2=1\)
\(\Rightarrow x=1\)
Sức chịu đựng có giới hạn -.-
- Mình tiếp tục cho Nguyễn Phương Trâm nhé.
g, \(\left(2x-1\right)^3=-27\)
\(\Rightarrow\left(2x-1\right)^3=\left(-3\right)^3\)
\(\Rightarrow2x-1=-3\)
\(\Rightarrow2x=-2\)
=> \(x=-1\)
- Vậy x = -1
h,\(\dfrac{x-1}{-15}=-\dfrac{60}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=-60.\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900 \)
\(\Rightarrow\left(x-1\right)^2=30^2\Rightarrow x-1=30\)
=> x = 31
i,\(x:\left(\dfrac{-1}{2}\right)^3=\dfrac{-1}{2}\)
=> \(x:\left(-\dfrac{1}{8}\right)=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{16}\)
- Vậy x=\(\dfrac{1}{16}\)
j, \(\left(\dfrac{3}{4}\right)^5.x=\left(\dfrac{3}{4}\right)^7\)
\(\Rightarrow \left(\dfrac{3}{4}\right).x=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^2:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{3}{4}\)
- Vạy x = \(\dfrac{3}{4}\)
k, \(8^x:2^x=4\Rightarrow\left(8:2\right)^x=4\)
=>\(4^x=4\)
=> x = 1
- Vậy x = 1
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
\(\text{#ID07 - DNfil}\)
`A = -(x + 1)^2 + 5`
Ta có: `(x + 1)^2 \ge 0` `AA` `x`
`=> -(x + 1)^2 \le 0` `AA` `x`
`=> -(x + 1)^2 + 5 \le 5` `AA` `x`
Vậy, GTLN của A là `5` khi `(x + 1)^2 = 0 => x + 1 = 0 => x = -1`
________
2.
`2x - 0,7 = 1,3`
`=> 2x = 1,3 + 0,7`
`=> 2x = 2`
`=> x = 1`
Vậy, `x = 1`
__
`x - \sqrt{25} = (2/5 - 6/5)`
`=> x - \sqrt{25} = -3/5`
`=> x = -3/5 + \sqrt{25}`
`=> x = -3/5 + 5`
`=> x = 22/5`
Vậy, `x = 22/5`
__
`3/4 + 1/4 \div x = 2/5`
`=> 1/4 \div x = 2/5 - 3/4`
`=> 1/4 \div x = -7/20`
`=> x = 1/4 \div (-7/20)`
`=> x = -5/7`
Vậy, `x = -5/7.`