K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

 B= 12 - |3x + 2015| - |-3| = 12 - |3x + 2015| - 3 = 12 - 3 -  |3x + 2015| = 9 -  |3x + 2015|

Do |3x + 2015| \(\ge\)0    => -|3x + 2015|\(\le\)0    

=> 9 + (-|3x + 2015|) \(\le\)9      =>  9 -  |3x + 2015| \(\le\)9

Đẳng thức xảy ra khi:  |3x + 2015| = 0   => 3x + 2015 = 0    => 3x = 0 - 2015    => 3x = -2015   => x = \(\frac{-2015}{3}\)

Vậy giá trị lớn nhất của B là 9 khi x = \(\frac{-2015}{3}\)

11 tháng 10 2015

12-|3x+2015|-|-3|

=12-|3x+2015|+3

=B < 9

hay Bmax=9

<=>3x+2015=0

<=>....

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

6 tháng 8 2016

Có x2 \(\ge\)0 với mọi x

=> x2 + 5  \(\ge\)5 với mọi x

=> (x2 + 5)2  \(\ge\)25 với mọi x

=> (x2 + 5)2 + 4  \(\ge\)29 với mọi x

Dấu "=" xảy ra <=> x2 = 0 <=> x = 0

KL: GTNN của biểu thức = 29 <=> x = 0

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3