K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2016

với x=2014

=> f(x)=x2014-(x+1)x2013+(x+1)x2012-...-(x+1)x+(x+1)

=x2014-x2014-x2013+x2013+x2012-...-x2-x+x+1

=1

5 tháng 3 2016

cảm ơn nha

20 tháng 4 2019

x=2014 => x+1 = 2015

f(2014) = x^17 - (x+1)x^16 + ... + (x+1)x -1
= x^17 - x^17 - x^16 + x^16 - x^15 - ... + x^2 + x -1
= x - 1 = 2013

20 tháng 4 2019

Ta thấy \(x=2014\Rightarrow x+1=2015\)

Ta có: \(f\left(2014\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)

                     \(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)

                     \(=x-1\)(1)

Thay x=2014 vào  (1) ta được:

   \(f\left(2014\right)=2014-1\)

                      \(=2013\)

26 tháng 3 2019

Ta có x=2016 => x-1=2015 

Thay vào ta được :

A=x^6 -(x-1)x^5 - (x-1)x^4 -(x-1)x^3 - (x-1)x^2 - (x-1)x -x

 = x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x=0

26 tháng 3 2019

Thay x=2016 vào biểu thức trên ta được:

 \(A=x^6-\left(x-1\right).x^5-\left(x-1\right).x^4-\cdot\left(x-1\right).x^3-\left(x-1\right).x^2-\left(x-1\right).x-x\)

     \(=x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x\)

      \(=0\)

Vậy x=2016 là nghiệm của đa thức .

5 tháng 8 2020

Mình camon bạn nhiềuuuuu ❤

25 tháng 4 2018

tính f(2014) nha

27 tháng 5 2018

f(x) = x17-2015x16+2015x15-2015x14+...+2015x-1

ta có x=2014

=> 2015=2014+1=x+1

f(x)=x17-(x+1)x16+(x+1)x15-(x+1)x14+...+(x+1)x-1

=x17-x17-x16+x16+x15-x15-x14+...+x2+x-1

=x-1

=2014-1=2013