Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0
a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)
\(=x^2+2xy+y^3\)
Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :
(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8
= 1 - 1 + 1 - 1 + 1 =1
a, \(M=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(M=\left(x^2y+3x^2y\right)+\left(\frac{1}{3}xy^2+\frac{3}{5}xy^2\right)-2xy-\frac{2}{3}\)
\(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\)
b, Giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\)
\(M=4.\left(-1\right)^2.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{2}\right)^2-2.\left(-1\right).\frac{1}{2}-\frac{2}{3}\)
\(M=4.1.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{4}\right)+1-\frac{2}{3}\)
\(M=2-\frac{2}{15}+1-\frac{2}{3}\)
\(M=\left(2+1\right)+\left(-\frac{2}{15}-\frac{2}{3}\right)\)
\(M=3+\left(\frac{-4}{5}\right)\)
\(M=\frac{11}{5}\)
Vậy giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\) bằng \(\frac{11}{5}\)
Bài 1
\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^{2^2}-12x^2y^3\)
\(=(15x^2y^3-12x^2y^3)+(7x^2-12x^2)+(-8x^3y^2+11x^3y^2)\)
\(=3x^2y^3-5x^2+3x^3y^2\)
Bậc của hệ số cao nhất là 5
\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)
\(=(3x^5y-\frac{1}{2}x^5y)+(\frac{1}{3}xy^4+2xy^4)+(\frac{3}{4}x^2y^3-x^2y^3)\)
\(=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)
Bậc của hệ số cao nhất là 6
Bài 2
\(a.A=5xy-y^2-2xy+4xy+3x-2y\)
\(=(5xy-2xy+4xy)-y^2+3x-2y\)
\(=7xy-y^2+3x-2y\)
\(b.B=\frac{1}{2}ab^2-\frac{1}{8}ab^2+\frac{3}{4}a^2b-\frac{3}{8}a^2b-\frac{1}{2}ab^2\)
\(=(\frac{1}{2}ab^2-\frac{1}{8}ab^2-\frac{1}{2}ab^2)+(\frac{3}{4}a^2b-\frac{3}{8}a^2b)\)
\(=-\frac{1}{8}ab^2+\frac{3}{8}a^2b\)
\(c.C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)
\(=(2a^2b+5a^2b)+(-8b^2-3b^2)+(5c^2+4c^2)\)
\(=7a^2b-11b^2+9c^2\)
Bài 3
a. Thay x = 2 và y = 9 vào biểu thức A có
\(A=2.2^2-\frac{1}{3}.9\)
\(=8-3=3\)
Vậy giá trị biểu thức A = 3 khi x = 2 và y = 9
b.Thay a = -2 và b = -1/3 vào biểu thức B có
\(B=\frac{1}{2}.(-2)^2-3.(-\frac{1}{3})^2\)
\(=\frac{1}{2}.4-3.\frac{1}{9}\)
\(=2-3=-1\)
Vậy giá trị biểu thức B = -1 khi x = -2 và y = -1/3
c.Thay x = -1/2 và y = 2/3 vào biểu thức P có
\(P=2.(\frac{-1}{2})^2+3.\frac{-1}{2}.\frac{2}{3}+(\frac{2}{3})^2\)
\(=2.\frac{1}{4}-1+\frac{4}{9}\)
\(=\frac{1}{2}-\frac{5}{9}=\frac{-1}{18}\)
Vậy giá trị biểu thức P = -1/18 khi x = -1/2 và y = 2/3
d. Thay a = -1/3 và b = -1/6 vào biểu thức có
\(12.\frac{-1}{3}.(\frac{-1}{6})^2\)
\(=-4.\frac{1}{36}=\frac{-1}{9}\)
Vậy giá trị biểu thức bằng -1/9 khi a = -1/3 và b = -1/6
e.Thay x = 2 và y = 1/4 vào biểu thức có
\((\frac{-1}{2}.2.\frac{1^2}{4^2}).(\frac{2}{3}.2^3)\)
\(=-\frac{1}{16}.\frac{16}{3}=\frac{-1}{3}\)
Vậy giá trị biểu thức bằng -1/3 khi x = 2 và y = 1/4
Bài 4
\(a.(\frac{-1}{2}a^2)(-24a).(4m-n)\)
\(=\frac{-1}{2}.(-24).a^2.a.(4m-n)\)
\(=12a^3.(4m-n)\)
\(=48a^3m-12a^3n\)
\(b.(x^2)(x^3.2).(-1).(-3a)\)
\(=2.(-1).(-3).x^2.x^3.a\)
\(=6x^5a\)
Bài 5
\(a.\frac{1}{2}x^2(2x^2y^2z).(\frac{-1}{3}x^2y^3)\)
\(=\frac{1}{2}.2.(\frac{-1}{3}).x^2.x^2.x^2.y^2.y^3.z\)
\(=\frac{-1}{3}x^6y^5z\)
Bậc của đơn thức trên là 12
\(b.(-x^2y)^3.(\frac{1}{2}x^2y^3).(-2xy^2z)^2\)
\(=\frac{1}{2}.4.x^5.x^2.x^2.y^3.y^3.y^4.z^2\)
\(=2x^9y^{10}z^2\)
Bậc của đơn thức trên là 21
Bài 6
\(a.(-6x^3zy).(\frac{2}{3}yz)^2\)
\(=-6.\frac{4}{9}.x^3.y.y^2.z.z^2\)
\(=-\frac{8}{3}x^3y^3z^3\)
\(b.(xy-5x^2y^2+xy^2-xy^2)-(xy^2+3xy^2-9x^2y)\)
\(=-5x^2y^2+9x^2y-4xy^2+xy\)
Học tốt
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)
b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)
\(=9-3-1+27\)
=36-4=32
c: \(C=-0.7xy^2-2x^2y-4.5xy\)
\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)
\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)
\(=\dfrac{12}{5}\)
a) 5.(-2).(-1)2 + 2.(-2).(-1) – 3.(-2).(-1)2
= 5.(-2).1 + 4 – 3.(-2).1
= -10 + 4 + 6
= 0
b) x2y2 + x4y4 + x6y6 tại x = 1 và y = -1
= 12(-1)2 + 14(-1)4 + 16(-1)6
= 1.1 + 1.1 + 1.1
= 1+1+1
= 3
ơ mây zing gút chóp
đúng là bn của tui