Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{\left(a+1\right)\left(a+2\right)\left(a+3\right).....\left(a+2003\right)\left(a+2004\right)}{\left(b+5\right)\left(b+6\right)\left(b+7\right).....\left(b+2006\right)\left(b+2007\right)}\)
\(\Leftrightarrow\)\(A=\frac{\left(0+1\right)\left(0+2\right)\left(0+3\right).....\left(0+2003\right)\left(0+2004\right)}{\left(-4+5\right)\left(-4+6\right)\left(-4+7\right).....\left(-4+2006\right)\left(-4+2007\right)}\)
\(\Leftrightarrow\)\(A=\frac{1.2.3.....2003.2004}{1.2.3.....2002.2003}\)
\(\Leftrightarrow\)\(A=\frac{1.2.3.....2003}{1.2.3.....2003}.2004\)
\(\Leftrightarrow\)\(A=2004\)
Vậy \(A=2004\)
a)\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
Tại \(x=2006\) thì giá trị biểu thức \(A\) là:
\(A=2006^6-2007\cdot2006^5+...-2007\cdot2006+2007\)
\(=2006^6-\left(2006+1\right)\cdot2006^5+...-\left(2006+1\right)\cdot2006+2007\)
\(=2006^6-2006^6+2006^5-...-2006^2-2006+2007\)
\(=-2006+2007=1\)
b)Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Khi đó
\(VT=\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(1\right)\)
\(VP=\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(2\right)\)
Từ \((1) và (2)\) ta có điều phải chứng minh
c)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2004\right|+\left|x-1\right|=\left|2004-x\right|+\left|x-1\right|\)
\(\ge\left|2004-x+x-1\right|=2003\)
Đẳng thức xảy ra khi \(1\le x\le2004\)
Vậy với \(1\le x\le2004\) thì \(A_{Min}=2003\)
Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Áp dụng vào bài toán \(\left|x-2004\right|+ \left|x-1\right|\ge\left|x-2004+1-x\right|=2003\)
Dấu "=" xảy ra khi \(\left(x-2004\right)\left(1-x\right)\ge0\)
.....
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~