Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
=> (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x
Hay A \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2
Nên Amin = 2019 khi x = 2
\(P=\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
\(=\frac{x^2+5x+y^2+5y+2xy-6}{x^2+6x+y^2+6y+2xy}\)
\(=\frac{\left(x+y\right)^2+5\left(x+y\right)-6}{\left(x+y\right)^2+6\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(x+y+5\right)-6}{\left(x+y\right)\left(x+y+6\right)}\)
\(=\frac{2005\times\left(2005+5\right)-6}{2005\times\left(2005+6\right)}\)
\(=\frac{2005\times2010-6}{2005\times2011}\)
\(=\frac{2004}{2005}\)
Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)
\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)
\(=\)\(\frac{5}{3}\)
ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)
\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)
\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
\(2x^2+y^2+2xy-8x-6y+10=0\)
\(\Rightarrow2.\left(2x^2+y^2+2xy-8x-6y+10\right)=0\)
\(\Rightarrow4x^2+2y^2+4xy-16x-12y+20=0\)
\(\Rightarrow\left(4x^2+y^2+16+4xy-8y-16x\right)+\left(y^2-4y+4\right)=0\)
\(\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2=0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x+y-4\right)^2\ge0\forall x;y\\\left(y-2\right)^2\ge0\forall y\end{cases}\Rightarrow\left(2x+y-4\right)^2+\left(y-2\right)^2\ge0\forall x;y\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+y=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}2x+2=4\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Chúc bạn học tốt.