K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=2+2\left(ab+bc+ac\right)\)

=> \(0=2+2\left(ab+bc+ac\right)\)=> \(ab+bc+ca=-1\)

=> \(\left(ab+bc+ac\right)^2=1\)

Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+a^2bc+abc^2\right)\)

                                             \(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+a^2c^2\)

=> \(a^2b^2+b^2c^2+c^2a^2=1\)

Mặt khác : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

=> \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

                                             \(=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

=> \(a^4+b^4+c^4=4-2=2\)

15 tháng 7 2016
  • Ta có : \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Rightarrow ab+bc+ac=\frac{-\left(a^2+b^2+c^2\right)}{2}=-\frac{4}{2}=-2\)

  • Ta có ; \(\left(a^2+b^2+c^2\right)^2=16\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=16\)

\(\Leftrightarrow a^4+b^4+c^4=16-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Mặt khác : \(\left(ab+bc+ac\right)^2=4\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=4\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=4\)

\(\Rightarrow a^4+b^4+c^4=16-2.4=8\)

22 tháng 3 2016

bằng 1/2 bạn ơi

11 tháng 7 2021

Ta có a + b + c = 0 

<=> (a + b + c)2 = 0

<=> a2 + b2 + c2 + 2(ab + bc + ca) = 0 

<=> ab + bc + ca = \(-\frac{1}{2}\)

=> \(\left(ab+bc+ca\right)^2=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2a^2bc+2abc^2=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

<=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)

Lại có a2 + b2 + c2 = 1

=> (a2 + b2 + c2)2 = 1

<= > a4 + b4 + c4 + 2[(ab)2 + (bc)2 + (ca)2] = 1 

<=> \(a^4+b^4+c^4+2.\frac{1}{4}=1\)

<=> \(a^4+b^4+c^4=\frac{1}{2}\)

11 tháng 7 2021

Từ a + b + c = 0 => ( a + b + c )2 = 0 <=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

<=> ab + bc + ca = -1/2 => ( ab + bc + ca )2 = 1/4

<=> a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc = 1/4

<=> a2b2 + b2c2 + c2a2 + 2abc( a + b + c ) = 1/4

<=> a2b2 + b2c2 + c2a2 = 1/4 ( vì a + b + c = 0 )

Từ a2 + b2 + c2 = 1 => ( a2 + b2 + c2 )2 = 1 <=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 1

<=> a4 + b4 + c4 + 2( a2b2 + b2c2 + c2a2 ) = 1 

<=> a4 + b4 + c4 + 1/2 = 1 <=> a4 + b4 + c4 = 1/2

Vậy A = 1/2

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

Bài 2:

a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)

\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: Để A>0 thì x-3>0

hay x>3

 

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

21 tháng 12 2017

a+b+c = 0 <=> (a+b+c)^2 = 0

<=> 2(ab+bc+ca) = 0 - (a^2+b^2+c^2) = 0 - 1 = -1

<=> ab+bc+ca = -1/2

<=> (ab+bc+ca)^2 = 1/4

<=> a^2b^2+b^2c^2+c^2a^2 = 1/4 - 2abc.(a+b+c) = 1/4 - 0 = 1/4

Có : a^2+b^2+c^2 = 1

<=> (a^2+b^2+c^2) = 1

<=>  A = a^4+b^4+c^4 = 1 - 2.(a^2b^2+b^2c^2+c^2a^2) = 1 - 2.1/4 = 1/2

Vậy A = 1/2

k mk nha