Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=sinx.cosx+\frac{1-cos^2x}{1+\frac{cosx}{sinx}}+\frac{1-sin^2x}{1+\frac{sinx}{cosx}}\)
\(=sinx.cosx+\frac{\left(sinx-sinx.cosx\right)\left(1+cosx\right)}{1+cosx}+\frac{\left(cosx-sinx.cosx\right)\left(1+sinx\right)}{1+sinx}\)
\(=sinx.cosx+sinx-sinx.cosx+cosx-sinx.cosx\)
\(=sinx+cosx-sinx.cosx\)
a/ Tớ làm bên dưới rồi
b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)
c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)
\(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)
d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)
\(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)
\(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)
\(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)
\(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)
\(M=sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
\(=sinx.cosx+\dfrac{sin^2x}{\dfrac{cosx+sinx}{sinx}}+\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}\)
\(=sinx.cosx+\dfrac{sin^3x+cos^3x}{cosx+sinx}\)
\(=sinx.cosx+\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{cosx+sinx}\)
\(=sinx.cosx+sin^2x+cos^2x-sinx.cosx\)
\(=sin^2x+cos^2x=1\)
\(=\frac{\sin^2x}{1+\frac{\cos x}{\sin x}}+\frac{\cos^2x}{1+\frac{\sin x}{\cos x}}-1=\frac{\sin^3x}{\sin x+\cos x}+\frac{\cos^3x}{\sin x+\cos x}-1.\)
\(=\frac{\sin^3x+\cos^3x}{\sin x+\cos x}-1=\frac{\left(\sin x+\cos x\right).\left(\sin^2x-\sin x.\cos x+\cos^2x\right)}{\sin x+\cos x}-1\)
\(=1-\sin x.\cos x-1=-\sin x.\cos x\)
\(A=s\left(x\right)cs\left(x\right)+\frac{\left(s^3\left(x\right)+cs^3\left(x\right)\right)}{cs\left(x\right)\left(1+t\left(x\right)\right)}=s\left(x\right)cs\left(x\right)+\left(\frac{\left(s\left(x\right)+cs\left(x\right)\right)\left(1-s\left(x\right)cs\left(x\right)\right)}{\left(s\left(x\right)+cs\left(x\right)\right)}\right)\)
\(=1\) vì \(s\left(x\right)+cs\left(x\right)\ne0,\forall0< =x< =\frac{\pi}{2}\)
\(\dfrac{1}{\cos^2x}=1+\tan^2x=1+4=5\)\(\Rightarrow\cos^2x=\dfrac{1}{5}\Rightarrow\cos x=\dfrac{\sqrt{5}}{5}\)\(\Rightarrow\sin x=\tan x.\cos x=\left(-2\right).\dfrac{\sqrt{5}}{5}=\dfrac{-2\sqrt{5}}{5}\)
\(A=\dfrac{\dfrac{-4\sqrt{5}}{5}+\dfrac{\sqrt{5}}{5}}{\dfrac{\sqrt{5}}{5}+\dfrac{6\sqrt{5}}{5}}\)\(=\dfrac{-3}{7}\)
a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)
b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)
\(=\frac{1+tanx}{1+tanx}=1\)
c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)
\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)
Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)
\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)
\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)
d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)
\(1-\frac{sin^3x}{sinx+cosx}-\frac{cos^3x}{sinx+cosx}=1-\frac{sin^3x+cos^3x}{sinx+cosx}\)
\(=1-\frac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{sinx+cosx}=1-\left(1-sinxcosx\right)\)
\(=sinx.cosx\)