K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

\(C=\left(a+b\right)\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=\left(3a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)

\(\Leftrightarrow C=3ab+3a+3b+3\)

\(\Leftrightarrow C=3ab+3\left(a+b\right)+3\)

\(\Leftrightarrow C=3.\left(-5\right)+3.3+3\)

\(\Leftrightarrow C=\left(-15\right)+9+3\)

\(\Leftrightarrow C=\left(-3\right)\)

Vậy \(C=\left(-3\right)\)

22 tháng 9 2016

- Chết cmnr :)) T làm nhầm 1 chỗ

Làm lại nè:

\(\Leftrightarrow C=3\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow C=\left(3a+3\right)\left(b+1\right)\)

\(\Leftrightarrow C=3a\left(b+1\right)+3\left(b+1\right)\)

\(\Leftrightarrow C=3ab+3a+3b+3\)

\(\Leftrightarrow C=3.\left(-5\right)+3\left(a+b\right)+3\)

\(\Leftrightarrow C=\left(-15\right)+3.3+3\)

\(\Leftrightarrow C=\left(-15\right)+9+3\)

\(\Leftrightarrow C=\left(-3\right)\)

p/s : Không hiểu mắt tớ bị hỏng chỗ nào mà số 3 viết thành 1 nhưng đáp án vẫn đúng =))

24 tháng 11 2019

Ta có: a - b - c = 0

=> \(\hept{\begin{cases}a-c=b\\a-b=c\\-b-c=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-\left(a-b\right)=-c\\-\left(b+c\right)=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-a+b=-c\\b+c=a\end{cases}}\)

Lại có: \(P=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)

\(\Rightarrow P=\frac{a-c}{a}.\frac{b-a}{b}.\frac{c+b}{c}=\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=-1\)

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

14 tháng 1 2018

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)

<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)

<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)