K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

đề có sai ko bạn

28 tháng 8 2020

\(\frac{27^2.8^5}{6^6.32^3}=\frac{\left(3^3\right)^2.\left(2^3\right)^5}{2^3.3^3.\left(2^5\right)^3}=\frac{3^6.2^{15}}{2^3.3^3.2^{15}}=\frac{27}{8}\)

học tốt

19 tháng 7 2019

bài 2

làm câu B;C nha

B)

\(27^3=\left(3^3\right)^3=3^9\)

\(9^5=\left(3^2\right)^5=3^{10}\)

vì \(10>9\)

\(=>9^5>27^3\)

C)

\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)

\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)

vì \(2^{18}< 2^{20}\)

\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)

\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)

19 tháng 7 2019

\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)

\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)

Bài 2:

\(\text{A.Ta có:}\)

\(5^6=\left(5^3\right)^2=125^2\)

\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)

Vì \(125< 128\)

\(\Rightarrow125^2< 128^2\)

\(\Rightarrow5^6< \left(-2\right)^{14}\)

\(\text{B.Ta có:}\)

\(9^5=\left(3^2\right)^5=3^{10}\)

\(27^3=\left(3^3\right)^3=3^9\)

Vì \(9< 10\)

\(\Rightarrow3^9< 3^{10}\)

\(\Rightarrow27^3< 9^5\)

\(\text{C.Ta có:}\)

\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)

\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)

Vì \(18< 20\)

\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)

\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)

\(A=-\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}\)

\(=\frac{-6.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}\)

\(=-\frac{6}{9}=-\frac{2}{3}\)

16 tháng 7 2017

Ta có:

\(\frac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}=\frac{2^{20}\cdot\left[3^3\right]^3+2\cdot3\cdot5\cdot\left[2^2\right]^9\cdot\left[3^2\right]^4}{2^9\cdot3^9\cdot\left[2^2\right]^5+3^{10}\cdot\left[2^2\right]^{10}}=\frac{2^{20}\cdot3^{3\cdot3}+2\cdot3\cdot5\cdot2^{2\cdot9}\cdot3^{2\cdot4}}{2^9\cdot3^9\cdot2^{2\cdot5}+3^{10}\cdot2^{2\cdot10}}\)

\(=\frac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot2^{20}}=\frac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}=\frac{2^{19}\cdot3^9\left[2+5\right]}{2^{19}\cdot3^9\left[1+3\cdot2\right]}=\frac{2+5}{1+6}=\frac{7}{7}=1\)

20 tháng 10 2017

2048/3081

3 tháng 1 2019

\(\frac{2048}{5135}\)

22 tháng 3 2019

\(B=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)

    \(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

     \(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^6.\left(3+1\right)}\)

       \(=\frac{2^{12}.3^4.2}{2^{12}.3^6.2^2}\)

22 tháng 3 2019

\(B=\frac{1}{18}\)

8 tháng 9 2017

a) \(\frac{8^5.\left(-5\right)^8+\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}\)

\(=\frac{2^{15}.5^8+\left(-2\right)^5.10^9}{2^{16}.5^7+2.10^8}\)

\(=\frac{5-2^4.10}{2}\)

\(=5-8.10\)

\(=5-80\)

\(=-75\)

8 tháng 9 2017

a ) = -0,7499957912

b ) = -0,75