Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)
\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.
b) \(B=3+3^3+3^5+3^7+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)
\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.
a: \(A=25+125=150\)
b: \(B=16+64=80\)
c: \(C=32+9+1=33+9=42\)
d: \(D=1+8+27=35+1=36\)
g: \(K=11\cdot3^{29}-\dfrac{3^{30}}{4\cdot3^{28}}=11\cdot3^{29}-\dfrac{9}{4}\)
M = 1 + 5 + 52 +....+ 521
5M = 5 + 52 + .... + 522
5M - M = 522 - 1
4M = 522 - 1
4M + 4 = 522 - 1 + 4
4M + 4 = 522 + 3
Ta có : M = 1 + 5 + 52 + 53 + ..... + 521
=> 5M = 5 + 52 + 53 + ..... + 522
=> 5M - M = 522 - 1
=> 4M = 522 - 1
=> 4M + 4 = 522 - 1 + 4
=> 4M + 4 = 522 + 3
\(B=\frac{36^2.90^3.5^4}{6^5.5^6}=\frac{\left(2^2.3^2\right)^2.\left(2.3^2.5\right)^3.5^4}{\left(2.3\right)^5.5^6}\)
\(B=\frac{2^2.3^4.2^3.3^6.5^3.5^4}{2^5.3^5.5^6}\)
\(B=\frac{2^7.3^{10}.5^7}{2^5.3^5.5^6}=2^2.3^5.5\)
\(B=4.243.5=4860\)
\(G=5+5^3+5^5+...+5^{99}\)
\(25G=5^3+5^5+5^7+...+5^{101}\)
\(25G-G=5^3+5^5+5^7+...+5^{101}-5-5^3-5^5-...-5^{99}\)
\(24G=5^{101}-5\)
\(\Rightarrow G=\frac{5^{101}-5}{24}\)