Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Sửa đề: x+y=1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\)
\(=1-3xy+3xy\left[1-2xy\right]+6x^2y^2\)
=1
C1: \(B=x^3+3xy+y^3\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay \(x+y=1\)ta được:
\(B=1^3-3xy\left(1-1\right)=1\)
C2: \(x+y=1\)\(\Rightarrow\)\(x=1-y\)
\(B=x^3+3xy+y^3=\left(1-y\right)^3+3\left(1-y\right)y+y^3\)
\(=1-3y+3y^2-y^3+3y-3y^2+y^3=1\)
\(A=2x^2+4xy-4x+2y^2-10xy+4y+2xy\)
\(A=\left(2x^2-4xy+2y^2\right)-\left(4x-4y\right)=2\left(x^2-2xy+y^2\right)-4\left(x-y\right)\)
\(A=2\left(x-y\right)^2-4\left(x-y\right)=2.3^2-4.3=6\)