K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)

=\(\sqrt{225+2.15.\sqrt{2}+2}+\sqrt{121+2.11\sqrt{2}+2}\)

=\(\sqrt{\left(15+\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\)

=\(15+\sqrt{2}+11+\sqrt{2}\)

=\(26+2\sqrt{2}\)

24 tháng 11 2019

\(a,A=\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)^2\)

\(=6-2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)

\(=2\)

\(b,B=\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\)

\(=\sqrt{\left(15-\sqrt{2}\right)^2+\left(11+\sqrt{2}\right)^2}\)

\(=26\)

hơi tắt

16 tháng 9 2019

a) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\\ =\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\\ =\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\\ =\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\\ =\sqrt{13+30\left(\sqrt{2}+1\right)}\\ =\sqrt{13+30\sqrt{2}+30}\\ =\sqrt{43+30\sqrt{2}}\\ =\sqrt{\left(3\sqrt{2}+5\right)^2}\\ =3\sqrt{2}+5\)

b) \(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}\\ =\sqrt{225-2\cdot15\sqrt{2}+2}+\sqrt{121+2\cdot11\sqrt{2}+2}\\ =\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}\\ =15-\sqrt{2}+11+\sqrt{2}\\ =26\)

12 tháng 7 2019

\(\sqrt{227-30\sqrt{2}}+\sqrt{123+22\sqrt{2}}=\sqrt{225-30\sqrt{2}+2}+\sqrt{121+22\sqrt{2}+2}=\sqrt{15^2-15.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{11^2+11.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)^2}=15-\sqrt{2}+11+\sqrt{2}\left(do:15-\sqrt{2}>0;11+\sqrt{2}>0\right)=26\)

31 tháng 7 2018

a)

=\(\sqrt{15^2-2\cdot15\cdot\sqrt{2}+2}+\sqrt{11^2+2\cdot11\cdot\sqrt{2}+2}\)

=\(\sqrt{\left(15-\sqrt{2}\right)^2}+\sqrt{\left(11+\sqrt{2}\right)}^2\)

=\(15-\sqrt{2}+11+\sqrt{2}\)

=26

c)

=\(\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}\left(\sqrt{5}+2\right)\)

=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}\)

24 tháng 5 2016

\(\sqrt{13+\sqrt{30\sqrt{2+\sqrt{9+4\sqrt{2}}}}}=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}}\) \(=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}}=\sqrt{13+\sqrt{30\sqrt{2+2\sqrt{2}+1}}}\)\(=\sqrt{13+\sqrt{30\sqrt{\left(\sqrt{2}+1\right)^2}}}\)\(=\sqrt{13+\sqrt{30\left(\sqrt{2}+1\right)}}=\sqrt{13+\sqrt{30\sqrt{2}+30}}\)