Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>C=\dfrac{5^{996}\left(5^{101}+10-10\right)-1}{4}\)
\(= >C=\dfrac{5^{1097}-1}{4}\)
Nếu muốn rút gọn thêm nữa thì ta khai triển ở tử thành hằng đẳng thức mở rộng : \(a^n-b^n\) , cụ thể là:
\(5^{1097}-1^{1097}=\left(5-1\right)\left(5^{1096}+5^{1095}+....+5^1+1\right)\)
\(=>C=5^{1096}+5^{1095}+....+5^2+5+1\)
CHÚC BẠN HỌC TỐT.....
=1+(2+5-3-4)+ (6+9-7-8)+................+(994+997-995-996)+998
=1+0+0+.........+998
=999
Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)
\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)=x^4y^{10}\cdot\dfrac{1}{-x^2y^5}=\dfrac{x^4y^{10}}{-x^2y^5}=-x^2y^5\)
Thay \(x=\dfrac{1}{2};y=-1\) vào biểu thức trên ta có:
\(-\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)^5=\dfrac{1}{4}\cdot\left(-1\right)=-\dfrac{1}{4}\)
Vậy giá trị của biểu thức đã cho là \(-\dfrac{1}{4}\) tại \(x=\dfrac{1}{2}\) và \(y=-1\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
x2−10x=x(x−10)≠0x2−10x=x(x−10)≠0 khi x≠0;x−10≠0x≠0;x−10≠0
Hay x≠0;x≠10x≠0;x≠10
x2+10x=x(x+10)≠0x2+10x=x(x+10)≠0 khi x≠0;x+10≠0x≠0;x+10≠0
Hay x≠0;x≠−10x≠0;x≠−10
x2+4≥4x2+4≥4
Vậy điều kiện của biến x để biểu thức đã cho được xác định là
x≠−10,x≠0,x≠10x≠−10,x≠0,x≠10
Để việc tính giá trị của biểu thức được đơn giản hơn ta rút gọn biểu thức trước :
(5x+2x2−10x+5x−2x2+10x).x2−100x2+4(5x+2x2−10x+5x−2x2+10x).x2−100x2+4
= [
ĐKXĐ: x2 - 10x khác 0, x2 + 10x khác 0
<=> x khác 0 và x khác +-10.
\((\dfrac{5x + 2}{x^2-10x}+\dfrac{5x-2}{x^2+10x}).\dfrac{x^2-100}{x^2+4}\)
= \(\dfrac{(5x+2)(x+10)+(5x-2)(x-10)}{x(x-10)(x+10)} .\dfrac{(x-10)(x+10)}{x^2+4}\)
= \(\dfrac{5x^2+12x+20+5x^2-12x+20}{x(x^2+4)}\)
= \(\dfrac{10x^2+40}{x(x^2+4)}\)
= \(\dfrac{10(x^2-4)}{x(x^2-4)}\)
= \(\dfrac{10}{x}\)
Thay x = 20040 vào biểu thức, ta có:
\(\dfrac{10}{20040}\) = \(\dfrac{1}{2004}\)
a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)
b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)
\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)
\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)
\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)
\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)
\(B=4\)
Vậy với mọi giá trị của x thì B luôn bằng 4
Vậy giá trị của B không phụ thuộc vào biến ( đpcm )
\(Giải:\)
\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)
\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)
\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)
\(=>C=\dfrac{5^{996}\left(5^{101}+10-10\right)-1}{4}\)
\(=>C=\dfrac{5^{1097}-1}{4}\)
CHÚC BẠN HỌC TỐT......
thanks bạn