Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{1}{199}-\dfrac{1}{199.198}-\dfrac{1}{198.197}-\dfrac{1}{197.196}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{199}-\left(\dfrac{1}{199.198}+\dfrac{1}{198.197}+\dfrac{1}{197.196}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{199}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{196.197}+\dfrac{1}{197.198}+\dfrac{1}{198.199}\right)\)
\(=\dfrac{1}{199}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...-\dfrac{1}{198}+\dfrac{1}{198}-\dfrac{1}{199}\right)\)
\(=\dfrac{1}{199}-\left(1-\dfrac{1}{199}\right)\)
\(=\dfrac{1}{199}-\dfrac{198}{199}=\dfrac{-197}{199}\)
~ Học tốt ~
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{98}{99}\)
\(=\dfrac{49}{99}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)
=3/2x4/3x...............x100/99
=2-1/99
=197/99
A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)
A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)
A=\(\frac{100}{2}=50\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%