K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

A= 20054-2004.2006.(20052+1)

=\(2005^4-\left(2005-1\right)\cdot\left(2005+1\right)\cdot\left(2005^2+1\right)\)

=\(2005^4-\left(2005^2-1\right)\cdot\left(2005^2+1\right)\)

=\(2005^4-\left(2005^4-1\right)\)

=1

9 tháng 1 2017

B=1999.(20002+2001)-2001.(20002-1999)

=\(1999\cdot2000^2+1999\cdot2001-2001\cdot2000^2+2001\cdot1999\)

=\(2000^2\left(1999-2001\right)+2\cdot1999\cdot2001\)

=\(2000^2\cdot\left(-2\right)+2\cdot1999\cdot2001\)

=\(2000^2\cdot\left(-2\right)+2\left(2000-1\right)\left(2000+1\right)\)

=\(-2\cdot2000^2+2\left(2000^2-1\right)\)

=\(-2\cdot2000^2+2\cdot2000^2-2\)

=-2

3 tháng 7 2017

Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999

           B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000

Vậy A < B 

3 tháng 7 2017

Sorry mk chưa đoc kĩ đề mk làm lại nhá 

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1

Mà B = 20002 

Nên A < B  

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1

Mà B = 20122 

Nên A < B  

23 tháng 12 2018

cái này đề bồi dưỡng toán mà

23 tháng 12 2018

\(a^{2002}+b^{2002}=a^{2001}+b^{2001}\)

\(\Leftrightarrow a^{2002}+b^{2002}-b^{2001}-a^{2001}=0\)

\(\Leftrightarrow a^{2001}.\left(a-1\right)+b^{2001}.\left(b-1\right)=0\)

\(\text{vì }a,b>0\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

\(a^{2001}+b^{2001}=a^{2000}+b^{2000}\)

\(\Leftrightarrow a^{2001}+b^{2001}-a^{2001}-b^{2001}=0\)

\(\Leftrightarrow a^{2000}.\left(a-1\right)+b^{2000}.\left(b-1\right)=0\)

\(\text{vì }a,b>0\Rightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

=> a=b=1

=> \(a^{2019}+b^{2019}=1+1=2\)

11 tháng 3 2016

xét hiệu:

\(\left(a^{2000}+b^{2000}\right)\left(a^{2002}+b^{2002}\right)-\left(a^{2001}+a^{2001}\right)^2=0\)

11 tháng 3 2016

(a^2001 + b^2001).(a+ b) - (a2000 + b2000).ab = a^2002 + b^2002

(a+ b) – ab = 1

(a – 1).(b – 1) = 0

a = 1 hoặc b = 1

Với a = 1 suy ra; b^2000 = b^2001 suy ra; b = 1 hoặc b = 0 (loại)

Với b = 1suy ra; a2000 = a2001 suy ra; a = 1 hoặc a = 0 (loại)

Vậy a = 1; b = 1 suy ra a2011 + b2011 = 2

19 tháng 10 2015

tính theo công thức lũy thừa

25 tháng 12 2024

M = 1999 * 2000² + 1999 * 2001 - 2001 * 2000² + 2001 * 1999

Nhóm các số hạng có chứa 2000² lại với nhau:

M = (1999 * 2000² - 2001 * 2000²) + (1999 * 2001 + 2001 * 1999)

Đặt nhân tử chung 2000² ra ngoài:

M = 2000² * (1999 - 2001) + 2 * (1999 * 2001)

M = 2000² * (-2) + 2 * (1999 * 2001)

Ta thấy 1999 = 2000 - 1 và 2001 = 2000 + 1. Áp dụng hằng đẳng thức (a - b)(a + b) = a² - b²:

M = -2 * 2000² + 2 * [(2000 - 1)(2000 + 1)]

M = -2 * 2000² + 2 * (2000² - 1²)

M = -2 * 2000² + 2 * 2000² - 2 * 1

M = -2

17 tháng 5 2016

a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1

Vay a2011+b2011=2

7 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

9 tháng 4 2015

 (a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2

11 tháng 12 2015

a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2 

Vậy ...

16 tháng 12 2020

Ta có:\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Rightarrow a^{2000}+b^{2000}+a^{2002}+b^{2002}=2\left(a^{2001}+b^{2001}\right)\)

\(\Rightarrow a^{2002}-a^{2001}-a^{2001}+a^{2000}+b^{2002}-b^{2001}-b^{2001}+b^{2000}=0\)

\(\Rightarrow a^{2001}\left(a-1\right)-a^{2000}\left(a-1\right)+b^{2001}\left(b-1\right)-b^{2000}\left(b-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a^{2001}-a^{2000}\right)+\left(b-1\right)\left(b^{2001}-b^{2000}\right)=0\)

\(\Rightarrow a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)

Dấu"="xảy ra khi \(\orbr{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\)Mà \(a,b>0\)

\(\Rightarrow a=b=1\)

Do đó:\(a^{2020}+b^{2020}=1^{2020}+1^{2020}=1+1=2\)