Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{2}{x}+\frac{1}{12}=\frac{3}{10}\)
\(\frac{2}{x}=\frac{3}{10}-\frac{1}{12}=\frac{13}{60}\)
\(13x=2\cdot60\)
\(13x=120\)
\(x=\frac{120}{13}\)
\(\frac{2}{x}+\frac{1}{12}=\frac{3}{10}\)
\(\Rightarrow\frac{2}{x}=\frac{3}{10}-\frac{1}{12}=\frac{13}{60}\)
\(\Rightarrow120=13x\)
\(\Rightarrow x=\frac{120}{13}\)
\(G=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..............+\frac{1}{3^{100}}\)
\(3G=1+\frac{1}{3}+\frac{1}{3^2}+...............+\frac{1}{3^{99}}\)
\(3G-G=\left(1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...............+\frac{1}{3^{100}}\right)\)
\(2G=1-\frac{1}{3^{100}}\)
\(\Rightarrow G=\left(1-\frac{1}{3^{100}}\right):2\)
\(11\frac{19}{x}=\frac{272}{x}\left(đk:\text{ }x\ne0\right)\)
\(\Rightarrow\frac{11\cdot x+19}{x}=\frac{272}{x}\)
\(\Rightarrow11\cdot x+19=272\)
\(\Rightarrow11\cdot x=253\)
\(\Rightarrow x=23\)
hôm nay gặp bài như này thiếu đk x khác 0 nên đc 9đ, haha :))
\(\frac{-3}{x-1}\) có giá trị nguyên
\(\Leftrightarrow-3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(-3\right)\)
\(\Rightarrow x-1\in\left\{-1;-3;1;3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;4\right\}\)
phần b lm tương tự
x=8 nha, thử lại: 8*(8+1)=72. 4*18=72.
cho mình nha, mình cảm ơn
Ta có:
\(\frac{-22}{45}=\frac{-2266}{4635}\)
\(\frac{-51}{103}=\frac{-2295}{4635}\)
Do \(\frac{-2266}{4635}>\frac{-2295}{4635}\) nên \(\frac{-22}{45}>\frac{-51}{103}\)
\(\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+...+\frac{324}{17.19}\)
\(=\frac{2^2}{1.3}+\frac{4^2}{3.5}+\frac{6^2}{5.7}+...+\frac{18^2}{17.19}\)
\(=2\left(\frac{2.1^2}{1.3}+\frac{2.2^2}{3.5}+\frac{2.3^2}{5.7}+...+\frac{2.9^2}{17.19}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{3}+\frac{2^2}{3}-\frac{2^2}{5}+\frac{3^2}{5}-\frac{3^2}{7}+...+\frac{9^2}{17}-\frac{9^2}{19}\right)\)
\(=2\left[1+\frac{2^2-1}{3}+\frac{3^2-2^2}{5}+...+\frac{9^2-8^2}{17}-\frac{9^2}{19}\right]\)
\(=2\left(1+1+1....+1-\frac{81}{19}\right)=2\left(9-\frac{81}{19}\right)=\frac{180}{19}\)