Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{189}{190}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}........\frac{378}{380}\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}........\frac{18.21}{19.20}=\frac{1.2.3......18}{2.3.4....19}.\frac{4.5.6....21}{3.4.5....20}\)
\(P=\frac{1}{19}.\frac{21}{3}=\frac{21}{57}\)
a. Đê A nguyên thi 5x+1 chia hêt cho x-2 Suy ra 5x-10+11 chia hêt cho x-2 Suy ra 5.(x-2)+11 chia het cho x-2 Vi 5.(x-2) chia het cho x-2 nen 11 chia het cho x-2 Suy ra x-2 thuôc {1;-1;11;-11} Suy ra x thuôc {3;1;13;-9} Vay x thuoc {3;1;13;-9} b. A=1/10+1/15+1/21+...+1/171+1/190 1/2A=1/20+1/30+1/42+...+1/342+1/380 1/2A=1/4.5+1/5.6+1/6.7+...+1/18.19+1/19.20 1/2A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/18-1/19+1/19-1/20=1/4-1/20=1/5 A=1/5:1/2=1/5.2=2/5
\(P=\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{6}\right)+...+\left(1-\dfrac{1}{1225}\right)+\left(1-\dfrac{1}{1275}\right)\\ \Rightarrow\dfrac{P}{2}=\left(\dfrac{1}{2}-\dfrac{1}{6}\right)+\left(\dfrac{1}{2}-\dfrac{1}{12}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{2550}\right)\\ =\left(\dfrac{1}{2}-\dfrac{1}{2\cdot3}\right)+\left(\dfrac{1}{2}-\dfrac{1}{3\cdot4}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{50\cdot51}\right)\\ =\dfrac{1}{2}\cdot49-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\\ =\dfrac{49}{2}-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\\ =\dfrac{49}{2}-\dfrac{1}{2}+\dfrac{1}{51}=\dfrac{1225}{51}\\ \Rightarrow P=\dfrac{2450}{51}\)
\(\frac{1}{2}\) E= \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}\) E = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E\) = \(\frac{1}{2}-\frac{1}{9}\)
\(\frac{1}{2}E\) =\(\frac{7}{18}\)
=> E = \(\frac{7}{9}\)
E=\(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{28}+\frac{1}{36}\)
\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}E=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\)
\(\frac{1}{2}E=\frac{3-2}{2.3}+\frac{4-3}{3.4}+...\frac{8-7}{7.8}+\frac{9-8}{8.9}\)
\(\frac{1}{2}E=\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}-\frac{3}{3.4}+...+\frac{8}{7.8}-\frac{7}{7.8}+\frac{9}{8.9}-\frac{8}{8.9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}E=\frac{1}{2}-\frac{1}{9}=\frac{7}{18}\)
E=\(\frac{7}{18}:\frac{1}{2}=\frac{7}{9}\)