K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

a, 27x3 - 54x2y + 36xy2 - 8y3

=(3x)3 - 54 x2y + 36xy2 -(2y)3

=(3x - 2y)3

Thay x=4,y=6 vào biểu thức trên ta được

(3.4 - 2.6)=(12 -12)=0

Vậy với x=4 ,y=6 thì gtrị của bthức là 0

1 tháng 8 2018

a) \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3.\left(3x\right)^22y+3.3x\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

Thay x = 4 ; y = 6 vào ta được

\(=\left(3.4-2.6\right)^3\)

\(=\left(12-12\right)^3\)

\(=0\)

b) \(27x^3z^6-54x^2yz^4+36xy^2z^2-8y^3\)

\(=\left(3xz^2\right)^3-3.\left(3xz^2\right)^2.2y+3.3xz^2\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3xz^2-2y\right)^3\)

Thay x = 25 ; y = 150 ; z = 2 ta được

\(=\left(3.25.4-2.150\right)^3\)

\(=\left(300-300\right)^3\)

\(=0\)

1 tháng 8 2018

\(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x-2y\right)^3\)

Tại  \(x=4;\)\(y=6\) thì gtbt là:

    \(\left(3.4-2.6\right)^3=0\)

1 tháng 8 2018

913+3×91×9+3×91×92+9 tínnh nhanh nhé

10 tháng 1 2016

a=(x+2)^3

b=(x-1)^3

10 tháng 1 2016

mình viết kết quả thôi nhà,lười gõ lắm

21 tháng 6 2018

\(A=\cdot\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

    \(=\left(3x-2y\right)^3\)

thay x=4;y=6 vào 

\(A=\left(3.4-2.6\right)^3=0\)

21 tháng 6 2018

\(A=27x^3-54x^2y+36xy^2-8y^3\)

\(A=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

\(A=\left(3x-2y\right)^3\)

Thay x=4, y=6 vào biểu thức trên, ta được:

\(A=\left(3.4-2.6\right)^3\)

\(A=\left(12-12\right)^3\)

\(A=0^3=0\)

12 tháng 8 2019

\(27x^3-54x^2y+36xy^2-8y^3\\ =\left(3x\right)^3-3\cdot9x^2\cdot2y+3\cdot3x\cdot4y^2-\left(2y\right)^3\\ =\left(3x-2y\right)^3\)

5 tháng 9 2020

a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)

5 tháng 9 2020

Mình có làm ở câu dưới rồi . Bạn tham khảo link :

https://olm.vn/hoi-dap/detail/231817932107.html

4 tháng 10 2018

\(A=x^4-6x^3+27x^2-54x+32\)

\(=x^4-5x^3+22x^2-32x-x^3+5x^2-22x+32\)

\(=x\left(x^3-5x^2+22x-32\right)-\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left(x^3-3x^2+16x-2x^2+6x-32\right)\)

\(=\left(x-1\right)\left[x\left(x^2-3x+16\right)-2\left(x^2-3x+16\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)

Vì \(x\in Z\)=> x-1;x-2 là 2 số nguyên liên tiếp => \(\left(x-1\right)\left(x-2\right)⋮2\)

\(\Rightarrow A=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)⋮2\) hay A là số chẵn (đpcm)

4 tháng 10 2018

\(A=x^4-6x^3+27x^2-54x+32\)

\(=x^4-x^3-5x^3+5x^2+22x^2-22x-32x+32\)

\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left[x^2\left(x-2\right)-3x\left(x-2\right)+16\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)

Vì \(\left(x-1\right)\left(x-2\right)⋮2\) nên A là số chẵn với mọi x thuộc Z

2 tháng 9 2020

a) \(x^2+\frac{1}{3}+\frac{1}{36}=\left(x+\frac{1}{6}\right)^2\)

Thay \(x=\frac{-7}{6}\)vào biểu thức ta được: \(\left(\frac{-7}{6}+\frac{1}{6}\right)^2=\left(-1\right)^2=1\)

b) \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Thay \(x=103\)vào biểu thức ta được: \(\left(103-3\right)^2=100^2=10000\)

c) \(4x^2-y^2-2y-1=4x^2-\left(y^2+2y+1\right)\)

\(=4x^2-\left(y+1\right)^2=\left(2x-y-1\right)\left(2x+y+1\right)\)

Thay \(x=234\)và \(y=465\)vào biểu thức ta được:

\(\left(2.234-465-1\right)\left(2.234+465+1\right)=2.934=1868\)

2 tháng 9 2020

a) Ta có: \(x^2+\frac{1}{3}x+\frac{1}{36}=x^2+2\cdot\frac{1}{6}\cdot x+\left(\frac{1}{6}\right)^2\)

\(=\left(x+\frac{1}{6}\right)^2\) , tại \(x=-\frac{7}{6}\) thì giá trị của BT là:

\(\left(-\frac{7}{6}+\frac{1}{6}\right)^2=1^2=1\)

b) Ta có: \(x^3-9x^2+27x-27=\left(x-3\right)^3\)

Tại x = 103 thì giá trị của BT là:

\(\left(103-3\right)^3=100^3=1000000\)

c) Ta có: \(4x^2-y^2-2y-1\)

\(=\left(2x\right)^2-\left(y+1\right)^2\)

\(=\left(2x-y-1\right)\left(2x+y+1\right)\)

Tại x = 234, y = 465 thì giá trị của BT là:

\(\left(2\cdot234-465-1\right)\left(2\cdot234+465+1\right)\)

\(=2\cdot934=1868\)