K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017
Xét \(\Delta\)ABD và \(\Delta\)BDC có:
\(\widehat{DBC}=\widehat{DBC}\left(gt\right)\)
\(\Rightarrow\Delta\)ABD ∽ \(\Delta\)BDC(trường hợp 3)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{DB}{DC}\Rightarrow BD^2=AB.BC\)
=> BD = \(\sqrt{ }\)(AB.DC) = \(\sqrt{ }\)(12,5.8,5) = \(\sqrt{ }\)356,25 => BD = 18,9 cm
22 tháng 4 2017

Xét ∆ABD và ∆BDC có:

2016-01-16_190637

=> ∆ABD ∽ ∆BDC(trường hợp 3)

2016-01-16_190746

=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm

17 tháng 7 2019

Giải bài 36 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy x ≈ 18,87 cm.

30 tháng 3 2017

Giải bài 36 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

22 tháng 4 2017

a)

2016-01-16_191244

Vậy ∠EBD = 900

Vậy trong hình vẽ có ba tam giác vuông đó là:

∆ABE, ∆CBD, ∆EBD.

b) ∆ABE và ∆CDB có:

∠A = ∠C = 900

∠ABE = ∠CDB

=> ∆ABE ∽ ∆CDB => AB/CD = AE/CB
=> CD = AB.CB/AE
= 18 (cm)

∆ABE vuông tại A => BE =

2016-01-16_194702 = 18 cm

∆EBD vuông tại B => ED =

2016-01-16_194738

= 28,2 cm

c) Ta có: 2016-01-16_194946

= 1/2 . 10.15 + 1/2 . 12.18

= 75 + 108 = 183 cm2

SACDE = 1/2 (AE + CD).AC =1/2 (10+18).27=378 cm2

=> SEBD = SEBD – ( SABE + SDBC) = 378 – 183 = 195cm2

15 tháng 3 2018

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chứng minh

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 37 trang 79 SGK Toán 8 Tập 2 | Giải toán lớp 8
5 tháng 3 2019

Xét ∆ABD và ∆BDC có:

+) \(\widehat{DAB}\) = \(\widehat{DBC}\) (gt)

+) \(\widehat{ABD}\) = \(\widehat{BDC}\) (Hai góc so le trong)

\(=> ∆ABD ∽ ∆BDC\) (g-g)

=> \(\dfrac{AB}{BD}\) = \(\dfrac{BD}{DC}\) (tính chất hai tam giác đồng dạng)

=> BD2 = AB.DC

\( =>BD = \sqrt {AB.DC} = \sqrt {12,5.28,5} \) \( \approx 18,87 cm\)

5 tháng 3 2019

Hỏi đáp Toán

Xét \(\Delta ABC\)\(\Delta BDC\), ta có:

\(\widehat{DAB}=\widehat{DBC}\left(gt\right)\)

\(\widehat{ABD}=\widehat{BDC}\left(AB//CD\right)\)

\(\Rightarrow\Delta ABC\sim\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=AB.DC\)

\(\Rightarrow BD=\sqrt{AB.DC}=\sqrt{12,5.28,5}\)

\(\Rightarrow BD\approx18,87cm\) hay \(x\approx18,87cm\)

1 tháng 4 2022

a, Xét ΔABD và ΔBDC có :

\(\widehat{A}=\widehat{DBC}\left(gt\right)\)

\(\widehat{ABD}=\widehat{BDC}\left(AB//CD;slt\right)\)

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)

b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BD}=\dfrac{BD}{DC}\)

hay \(BD^2=AB.DC=12.28,5=342\)

\(\Rightarrow BD=\sqrt{342}\left(cm\right)\)

21 tháng 4 2017

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: \(\widehat{B}=\widehat{D}\)

Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)

Do đó \(\widehat{B}=\widehat{D}=100^o\)

21 tháng 4 2017

Bài giải:

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ˆB=ˆD⇒B^=D^

Ta có ˆB+ˆD=3600(100+60)=200B^+D^=3600−(100+60)=200

Do đó ˆB=ˆD=1000B^=D^=1000

30 tháng 5 2019

Xét Δ ABD và Δ BDC có:

Bài tập: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ AB/BD = AD/BC = BD/DC

hay 12,5/x = x/28,5 ⇒  x 2  = 1425/4 ⇔ x ≈ 18,87

Chọn đáp án D.