K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

110 12 15 M N R P Q

Giả sử hình bình hành \(MNPQ\) có \(MN=12cm,MQ=15cm,\widehat{MNQ}=110^o\)

Ta có \(\widehat{NMQ}+\widehat{MNP}=180^o\) ( hai góc trong cùng phía )
mà \(\widehat{NMQ}=110^o\)

\(\Rightarrow\widehat{MNP}=180^o-110^o=70^o\)

Kẻ \(MR\perp NP\)

Trong tam giác vuông \(MNR\) ta có :
\(MR=MN.sin\widehat{MNP}\)

        \(=12.sin70^o\approx11,276\)

           Vậy \(S_{MNPQ}=MR.MQ\approx11,276.15=169,14\left(cm^2\right)\)

Chúc bạn học tốt !!!

21 tháng 11 2017

Giả sử hình bình hành MNPQ có MN = 12cm, MQ = 15cm,  ∠ NMQ = 1100

Ta có:  ∠ NMQ +  ∠ MNP = 180 °  (hai góc trong cùng phía)

Suy ra: MNP =  180 °  - NMQ

180 ° - 110 ° = 70 °

Kẻ MR ⊥ NP

Trong tam giác vuông MNR, ta có:

MR = MN.sin ∠ MNP =12.sin 70 °  ≈ 11,276 (cm)

Vậy S M N P Q  = MN.NP ≈ 11,276.15 = 169,14 ( c m 2 )

1 tháng 6 2017

giả sử góc a=135 độ , thì góc d=45 độ.kẻ đường cao ah khi đó góc dah=45 độ vậy tam giác adh cân và vuông.áp dụng pytago ah=6.căn bậc hai của 2.vậy diện tích hbh=15.6 căn bậc 2 của 2=90.căn bậc 2 của 2(cm^2)

21 tháng 10 2017

vì ABCD là hình bình hành

=> AD // BC ( tính chất )

=> \(\widehat{A}+\widehat{B}=180^0\)( hai góc trong cùng phía)

=> \(\widehat{B}=180^0-110^0=70^0\)

Kẻ AH\(\perp\)BC tại H, ta có tam giác vuông ABH

Xét tam giác vuông ABH, có:

AH=AB*sin B=12*sin 70 độ

\(AH\approx11,276\)(cm)

ta có: AD=BC ( ABCD là hình chữ nhật )

\(\Rightarrow S_{ABCD}=AH\cdot BC\approx11,276\cdot15=169,14\)(\(cm^2\))

22 tháng 10 2018

Diện tích hình binh hành là 90\(\sqrt{3}\) (cm2)

4 tháng 6 2021

Giả sử ta có hình bình hành ABCD, đường chéo AC, AB=12cm, AC=10cm, `\hat(ABC)=150^o`.

`S_(ABC) = 1/2 . 10. 12 . sinABC = 30 (cm^2)`

Vì đường chéo AC chia hình bình hành ABCD ra 2 tam giác bằng nhau.

`=> S_(ABCD) = 2.S_(ABC) = 60(cm^2)`

`=>` B.

4 tháng 6 2021

kẻ AH⊥BC; AB=10;BC=12

∠ABC=150

⇒∠ABH=30

xét ΔAHB có ∠H=90

⇒sin B=\(\dfrac{AH}{AB}\)⇒AH=\(\dfrac{1}{2}\).10=5

⇒SABCD=AH.AB=5.12=60

⇒chọn B

23 tháng 8 2017

A) Vẽ t/g ABC (A là góc nhọn), đường cao BH. 
1/2.AB.AC.sinA = 1/2.AB.AC.(BH/AB) = 1/2.BH.AC = S(ABC)

10 tháng 9 2016

A B C D H

Gọi hình bình hành đó là ABCD , từ A kẻ đường cao AH xuống cạnh CD (H thuộc CD)

Ta có : \(AH=AD.sinD\)

\(\Rightarrow S_{ABCD}=CD.AH=CD.AD.sinD\)

Vậy ta có điều phải chứng minh

DD
17 tháng 7 2021

Xét hình bình hành \(ABCD\)có \(O\)là giao điểm của \(AC\)và \(BD\).

Khi đó \(O\)là trung điểm của \(AC\)và \(BD\).

Độ dài hai đường chéo tỉ lệ với độ dài hai cạnh liên tiếp nên \(\frac{BD}{AC}=\frac{AB}{AD}\Leftrightarrow\frac{DA}{OA}=\frac{AB}{OB}\).

Xét tam giác \(DAB\)và tam giác \(AOB\)có: 

\(\widehat{DBA}=\widehat{ABO}\)(góc chung) 

\(\frac{DA}{AO}=\frac{AB}{OB}\)(cmt)

Suy ra \(\Delta DAB~\Delta AOB\left(c.g.c\right)\).

suy ra \(\widehat{AOB}=\widehat{DAB}\)(hai góc tương ứng) 

Ta có đpcm.