Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)
ta cho nó dài hơn như sau
A=(2/3+3/4+4/5+5/6+....+98/99+99/100)
ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số
2:3:4:5...99 vậy ta còn các số 2/100
ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99
làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100
vậy với (2/3+3/4+...+98/99) ra 2/99
xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
Xét mẫu số:
\(A=\frac{100-1}{1}+\frac{100-2}{2}+\frac{100-3}{3}+.......+\frac{100-99}{99}\)
\(\Rightarrow A=\left(\frac{100}{1}+\frac{100}{2}+....+\frac{100}{99}\right)-\left(\frac{1}{1}+\frac{2}{2}+....+\frac{99}{99}\right)\)
\(\Rightarrow A=100+100.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}\right)-99\)
\(A=1+100.\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)=100.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)\)
Vậy \(D=\frac{1}{100}\)
Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!
Tách 100 thành 100 số 1
Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS
=> Phân số trên=1
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)
=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)
\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)