Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân số thứ 3 you viết sai rồi
S6 = 10/56 + 10/140 + 10/260 + ... + 10/1400
2/10.S6 = 1/28 + 1/70 + 1/130 + ... + 1/700
6/10.S6 = 3/4.7 + 3/7.10 + 3/10.13 + ... + 3/25.28
3/5.S6 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/25 - 1/28
3/5.S6 = 1/4 - 1/28
3/5.S6 = 7/28 - 1/28 = 3/14
Tự lm típ đc rồi nhé
a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)
c: \(5S_3=5^6+5^7+...+5^{101}\)
\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)
hay \(S_3=\dfrac{5^{101}-5^5}{4}\)
d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+.......+\frac{10}{1400}\)
\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+\frac{5}{700}\)
\(\frac{3S}{5}=\frac{3}{4}\times7+\frac{3}{7}\times10+\frac{30}{10}\times13+........+\frac{3}{25}\times28\)
\(\frac{3S}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+......+\frac{1}{25}-\frac{1}{28}\)
\(\frac{3S}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\frac{3S}{5}=\frac{3}{14}\)
\(S=\frac{3}{14}\times\frac{5}{3}\)
\(S=\frac{5}{14}\)
Vậy \(S=\frac{5}{14}\)
S=10/56+10/140+10/260+....+10/1400
S=5/28+5/70+5/130+....+5/700
3S/5=3/4.7+3/7.10+3/10.13+...+3/25.28
3S/5=1/4-1/7+1/7-1/10+1/10-1/13+....+1/25-1/28
3S/5=1/4-1/28
3S/5=3/14
S=3/14.5/3
S=5/14
Vậy S=5/14
S=10/56+10/140+10/260+...........+10/1400
S=5/28+5/70+5/130+........+5/700
3S/5=3/4.7+3/7.10+3/13.10+.........+3/25.28
3S/5=1/4-1/7+1/7-1/10+1/10-1/13+.........+1/25-1/28
3S/5=1/4-1/28
3S/5=3/14
S=3/14.5/3
S=5/14
\(C=\frac{5}{4}+\frac{5}{28}+\frac{5}{70}+...+\frac{5}{297\cdot300}\)
\(C=5\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{297\cdot300}\right)\)
\(C=5\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{297}-\frac{1}{300}\right)\)
\(C=5\left(1-\frac{1}{300}\right)\)
\(C=5\cdot\frac{299}{300}\)
\(C=\frac{299}{60}\)
S = 10/56 + 10/140 + 10/260 + ....... + 10/1400
S = 5/28 + 5/70 + 5/130 + 5/700
3S/5 = 3/4 x 7 + 3/7 x 10 + 30/10 x 13 + ....... + 3/25 x 28
3S/5 = 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ........ + 1/25 - 1/28
3S/5 = 1/4 - 1/28
3S/5 = 3/14
S = 3/14 x 5/3
S = 5/14
Vậy S = 5/14
\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+\frac{10}{1400}\)
\(S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(S=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(S=5.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(S=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{25.28}\right)\)
\(S=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(S=5.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(S=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(S=\frac{15}{14}\)
Sai đề hay sao ik
s6:10/56+10/140+10/28+....................+10/1400
\(S_6=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\cdot\frac{6}{28}\)
\(=\frac{15}{14}\)