Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(\frac{1}{2}a^3b^2-\frac{3}{4}ab^4\right)\left(\frac{4}{3}a^3b+\frac{1}{3}ab\right)=\frac{2}{3}a^6b^3-\frac{1}{6}a^4b^3-a^4b^5-\frac{1}{4}a^2b^5\)
b/ \(\left(-1+x^5\right)\left(-6x+2x^2-14x^3\right)=6x-2x^2+14x^3-6x^6+2x^7-14x^8\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\frac{x+1}{2015}+1+\frac{x+2}{2014}+1=\frac{x+3}{2013}+1+\frac{x+4}{2012}+1\)
\(\Leftrightarrow\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)
\(\Leftrightarrow\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}-\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Có: \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\)
\(\Rightarrow x=-2016\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)
a) \(\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{\left(x-7\right)\left(x+7\right)}{2x+1}.\frac{-3}{x-7}=\frac{-3\left(x-7\right)\left(x+7\right)}{\left(2x+1\right)\left(x-7\right)}=\frac{-3\left(x+7\right)}{2x+1}\)
\(=\frac{-3x-21}{2x+1}\)
b) \(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}=\frac{x\left(3x-2\right)}{x^2-1}.\frac{x^4-1}{\left(3x-2\right)^3}=\frac{x\left(3x-2\right)}{x^2-1}.\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(3x-2\right)^3}\)
\(=\frac{x\left(3x-2\right)\left(x^2-1\right)\left(x^2+1\right)}{\left(x^2-1\right)\left(3x-2\right)^3}=\frac{x\left(x^2+1\right)}{\left(3x-2\right)^2}=\frac{x^3+x}{\left(3x-2\right)^2}\)
a/ \(\left(-4xy\right)\left(2xy^2-3x^3y\right)=-8x^2y^3+12x^4y^2\)
b/ \(\left(-5x\right)\left(3x^3+7x^2-x\right)=-15x^4-35x^3+5x^2\)
c/ \(\left(\frac{1}{2}a^3b^2-\frac{3}{4}ab^4\right)\left(\frac{4}{3}a^3b\right)=\frac{2}{3}a^6b^3-a^4b^5\)
d/ \(\left(-a^5x^5\right)\left(-a^6x+2a^3x^2-11ax^5\right)=a^{11}x^6-2a^8x^7+11a^6b^{10}\)
Trả lời:
\(\frac{x+3}{4}=\frac{2-x}{5}\)
\(\Leftrightarrow\frac{5\left(x+3\right)}{20}=\frac{4\left(2-x\right)}{20}\)
\(\Leftrightarrow5\left(x+3\right)=4\left(2-x\right)\)
\(\Leftrightarrow5x+15=8-4x\)
\(\Leftrightarrow5x+4x=8-15\)
\(\Leftrightarrow9x=-7\)
\(\Leftrightarrow x=-\frac{7}{9}\)
Vậy x = - 7/9 là nghiệm của pt.
\(\frac{x+3}{4}=\frac{2-x}{5}\)
\(\Rightarrow\frac{5\left(x+3\right)}{20}=\frac{4\left(2-x\right)}{20}\)
\(\Rightarrow5\left(x+3\right)=4\left(2-x\right)\)
\(\Rightarrow5x+15=8-4x\)
\(\Rightarrow5x+4x=8-15\)
\(\Rightarrow9x=-1\Leftrightarrow x=\frac{-7}{9}\)
Vậy ............